DOI: 10.32864/polymmattech-2019-5-4-6-20

УДК 541.64

«ЗЕЛЕНАЯ» КАТИОННАЯ ПОЛИМЕРИЗАЦИЯ: КАТИОННАЯ ПОЛИМЕРИЗАЦИЯ В ВОДНЫХ СРЕДАХ (ОБЗОР)

С. В. КОСТЮК^{1,2+}

¹Белорусский государственный университет, пр-т Независимости, 4, 220030, г. Минск, Беларусь ²Научно-исследовательский институт физико-химических проблем БГУ, ул. Ленинградская, 14, 220030, г. Минск, Беларусь

В обзоре рассмотрены две группы катализаторов, позволяющие проводить катионную полимеризацию в присутствии воды (с использованием реагентов и растворителей без глубокой осушки) и в водных средах. Специфические кислоты Льюиса, устойчивые к гидролизу водой (BF₃OEt₂, B(C₆F₅)₃), катализируют контролируемую катионную полимеризацию ряда виниловых мономеров: п-метоксистирола (pMOSt), циклопентадиена (CPD) и стирола (St) в присутствии избытка воды по отношению к кислоте Льюиса (LA). В указанных условиях были синтезированы полимеры с контролируемой молекулярной массой (до $M_n \sim 10000$ Да) и относительно узким молекулярномассовым распределением M_w/M_n : <1,3; <1,2–1,6; <1,5–1,8 для pMOSt; CPD; St соответственно.

Каталитические системы на основе $B(C_6F_5)_3$ позволили впервые провести катионную полимеризацию целого ряда виниловых мономеров в водных средах: pMOSt, n-гидроксистирола (pHOSt), St, CPD и изопрена (IP). Полимеризация pMOSt и pHOSt протекает в режиме «живых» цепей, позволяя синтезировать полимеры с M_n <4500 Да, концевыми гидроксильными группами и низкой полидисперсностью ($M_w/M_n < 1,5$). Полимеризация St, CPD и IP осуществляется через контролируемое инициирование и необратимый обрыв цепи через воду с образованием функционализированных олигомеров ($M_n < 2000$ Да), молекулярная масса которых определяется их поверхностной активностью и полярностью границы раздела фаз.

Открытие катализаторов на основе комплексов солей редкоземельных металлов (YbX₃, где X - Cl, NO₃, OTf) и хлоридов In (III), Sc(III), Y(III) с сильно разветвленным додецилбензолсульфонатом натрия (Lewis acid surfactant combined catalyst (LASC)) предоставило новые возможности для катионной полимеризации, позволив впервые синтезировать гомополимеры с высокой молекулярной массой (M_n от 36000 Да до 200000 Да), а также статистические и мультиблоксополимеры St с IP или β -мирценом ($M_n = 50000-150000$ Да) методом эмульсионной катионной полимеризации в мягких условиях.

Ключевые слова: катионная полимеризация; кислоты Льюиса; вода; катализаторы; стирол и его производные; 1,3-диены.

«GREEN» CATIONIC POLYMERIZATION: CATIONIC POLYMERIZATION IN AQUEOUS MEDIA (REVIEW)

S. V. KOSTJUK^{1,2+}

¹Belarusian State University, Nezavisimosti Ave, 4, 220030, Minsk, Belarus ²Research Institute for Physical Chemical Problems of the Belarusian State University, Leningradskaya St., 14, 220030, Minsk, Belarus

In this review, two types of catalysts allowing to conduct the cationic polymerization in the presence of water (using reagents and solvents without any purification) and in aqueous media have been reported. Specific Lewis acids stable in water such as BF_3OEt_2 and $B(C_6F_5)_3$ induced controlled cationic polymerization of

⁺E-mail: kostjuks@bsu.by

a number of vinyl monomers (p-methoxystyrene (pMOSt), cyclopentadiene (CPD) and styrene (St)) in the presence of excess of water towards Lewis acid. The polymers with controlled molecular weight (up to $M_n \sim 10000 \text{ Da}$) and relatively low polydispersity(M_w/M_n : <1.3 (pMOSt), 1.2–1.6 (CPD) and 1.5–1.8 (St).

Using of $B(C_6F_5)_3$ -based catalytic systems allowed to conduct for the first time the cationic polymerization of great variety of vinyl monomers in aqueous media such as p-methoxystyrene (pMOSt), p-hydroxystyrene (pHOSt), cyclopentadiene (CPD), styrene (St) and isoprene (IP). Polymerization of pMOSt and pHOSt proceeds in a living fashion resulting in hydroxyl-terminated polymers with $M_n < 4500$ Da and low polydispersity ($M_w/M_n < 1.5$). Polymerization of St, CPD and IP occurs via controlled initiation followed by irreversible chain transfer to water with the formation of functionalized oligomers ($M_n < 2000$ Da), molecular weight of which governs by surface activity and polarity of the interface.

Discovery of catalysts based on complexes of rare earth metal salts (YbX₃, X = Cl, NO₃, OTf) and chlorides of In (III), Sc(III), Y(III) with hyperbranched sodium dodecylbenzenesufonate (Lewis acid surfactant combined catalyst (LASC)) opens new possibilities for cationic polymerization allowing to prepare for the first time polymers with high molecular weight (M_n from 30000 Da to 200000 Da) as well as random and multiblock copolymers of St with IP and β -myrcene via emulsion cationic polymerization under mild conditions.

Keywords: cationic polymerization; Lewis acids; water; catalysts; styrene and its derivatives; 1,3-dienes.

Введение

Процессы катионной полимеризации (КП) широко используются для синтеза разнообразных полимеров и сополимеров, часто обладающих уникальными свойствами. Несомненными достоинствами КП является высокая скорость процесса, относительная дешевизна каталитических систем, а также возможность вовлечения в процесс полимеризации широкого круга мономеров [1-4]. Возрастающее антропогенное воздействие на окружающую среду, а также постоянный рост требований к повышению качества конечного продукта являются движущей силой к усовершенствованию уже существующих технологических процессов и разработке принципиально новых подходов к синтезу полимерных материалов [5]. Несмотря на то что многие технологические процессы синтеза полимерных материалов методом катионной (со)полимеризации остаются неизменными с того времени, когда они были внедрены в производство, целый ряд индустриальных компаний, а также научно-исследовательских лабораторий интенсивно работает над их усовершенствованием на протяжении последних 10-15 лет. Основным направлением исследований является поиск новых или модификация используемых катализаторов полимеризации с целью повышения их активности и, в некоторых случаях, стерео- и региоселективности [6]. Большое внимание уделяется также экологической составляющей за счет замены или, по крайней мере, снижения токсичности используемых катализаторов и растворителей [7].

Основными недостатками КП являются необходимость применения низких температур процесса (от -100 °C до -78 °C) для получения полимеров с высокой M_n , а также использование тщательно осушенных реагентов и растворителей [1, 5]. Первое частично связано с высокой экзотермичностью процесса КП (локальные перегревы могут достигать 40–60 °C), тогда как второе — с высокой чувствительностью используемых катализаторов даже к следам воды. Все это приводит к существенному удорожанию технологического процесса. В настоящее время исследуется две стратегии, направленные на преодоление указанных недостатков: проведение КП (1) в присутствии избытка воды по отношению к кислот Льюиса и (2) в водной суспензии или эмульсии [7]. Однако большинство кислот Льюиса (TiCl₄, AlCl₃ и др.) склонны к необратимому гидролизу в присутствии даже небольшого избытка воды [7]. Ввиду этого, для реализации КП в водных средах необходимо использовать специфические, устойчивые к гидролизу кислоты Льюиса.

Катионная полимеризация в присутствии избытка воды по отношению к кислоте Льюиса

Главным преимуществом проведения КП в присутствии избытка воды, по сравнению с традиционной КП, является возможность использования растворителей и мономеров без дополнительной осушки И проведение процесса полимеризации при температурах от -15 °C до +20 °С. Это позволяет существенно удешевить технологический процесс и сделать его более привлекательным для применения в промышленности. Одной из кислот Льюиса, способной соинициировать КП в присутствии избытка воды, является диэтилэфират трифторида бора (BF₃OEt₂).

Диэтилэфират трифторида бора (BF₃OEt₂) был использован в качестве кислоты Льюиса (LA), устойчивой к гидролизу для проведения контролируемой КП стирола (*St*) и ряда его производных в условиях когда [H₂O] \geq [LA] [8–13].

Полимеризация *п-гидрокси- и п-алкоксистиролов*. Полимеризация *п-гидроксистирола* (pHOSt) [8] и *п*-метоксистирола (pMOSt) [9] была исследована в присутствии BF₃OEt₂ как соинициатора и ряда аддуктов pMOSt (pMOSt-Cl, pMOSt-OAc, pMOSt-OEt, pMOSt–OH) в качестве инициаторов в ацетонитриле (CH₃CN) или его смеси с хлористым метиленом (CH₂Cl₂). Инициаторы с гидроксильной и эфирной группами (pMOSt–OH, pMOSt-OEt) более эффективны, чем с хлоридной и ацетатной группами (pMOSt-Cl, pMOSt-OAc), что обусловлено «оксофильной» природой BF₃ [14].

Важно отметить, что введение в систему избытка воды по отношению к кислоте Льюиса является необходимым условием реализации контролируемой полимеризации pHOSt [8]. Поли(*n*-гидроксистиролы) контролируемой молекулярной массой с $(M_n < 15000 \text{ Да})$, узким молекулярно-массовым распределением (MMP) (*M*_w/*M*_n ~ 1,4) и концевыми гидроксильными группами были синтезированы на инисистеме pMOSt-OH/BF3OEt2 циирующей при соотношении $[H_2O] / [BF_3OEt_2] = 100.$

Инициирующая система pMOSt–OH/BF₃OEt₂ оказалась также эффективной при реализации контролируемой КП *n*-метоксистирола (pMOSt) и *n-mpem*бутоксистирола (ptBOSt) [9]. Скорость полимеризации зависит от природы заместителя в *пара*-положении бензольного кольца и увеличивается в следующем ряду: ptBuOSt < pMOSt < pHOSt. Поли(алкосистиролы) с контролируемой молекулярной массой (<6000 Да) и узким MMP ($M_w/M_n \sim 1,3$) были получены при полимеризации ptBuOSt или pMOSt на инициирующей системе pMOSt– OH/BF₃OEt₂ в смеси CH₂Cl₂/CH₃CN при соотношении [H₂O]/[BF₃OEt₂] = 20. Данная система была также использована для синтеза статистических и *блок*сополимеров *n*-гидроксистирола и *n*-метоксистирола с контролируемой M_n и узким MMP ($M_w/M_n \sim 1,5$) [9].

Полимеризация St, п-метилстирола, п-хлорстирола и п-хлорметилстирола. Контролируемая КП St была проведена на инициирующей системе 1гидрокси-1-фенилэтан (PhEtOH)/BF3OEt2 в CH2Cl2 при 0 °C и при соотношении $[H_2O]/[BF_3OEt_2] = 1.8$ [10]. В этих условиях протекает медленная полимеризация St (~90% конверсии мономера за 20 ч) с образованием полимеров с M_n < 10000 Да) и относи-MMP $(M_w/M_n \sim 1.8).$ тельно узким Эта же инициирующая система была использована в реализации контролируемой КП *п*-метилстирола (pMSt), *n*-хлорстирола (pClSt) и *n*-хлорметилстирола (pClMSt) при соотношениях $[H_2O]/[BF_3OEt_2] \le 1,6$ 11]. Были синтезированы полимеры с [10, $M_n \le 15000$ Да и $M_w/M_n = 1,5-2,0$. Содержание концевых гидроксильных групп в полимерах не превышало 70%, что указывает на протекание в системе побочных процессов [10, 11].

Наиболее эффективным инициатором для проведения контролируемой КП St является 1-(4метоксифенил)этанол (pMOSt–OH), а оптимальное соотношение $[H_2O]/[BF_3OEt_2] = 1,6:2,2$ [13]. Действительно, молекулярная масса полистирола, полученного на инициирующей системе pMOSt– OH/BF₃OEt₂, увеличивается с ростом конверсии мономера и достигает 7500 Да. При этом MMP остается достаточно узким ($M_w/M_n \sim 1,8$) на всем протяжении синтеза [13]. Контролируемый характер процесса полимеризации также был подтвержден введением дополнительной порции мономера на поздних стадиях реакции, что способствовало увеличению молекулярной массы полистирола от 6000 Да до 9000 Да, а его ММР практически не изменялась после полимеризации второй порции St [13].

Методами спектроскопии ЯМР ¹Н и матричноактивированной лазерной десорбционно-ионизационной времяпролетной масс-спектрометрии (*MALDI-TOF MS*) было показано, что каждый синтезированный в описанных условиях полимер содержит в своем составе фрагмент инициатора в качестве головной группы [13]. Анализ же концевых групп показал, что полимерные цепи содержат в своём хвосте либо этоксильные группы, полученные путём обрыва растущих цепей на молекулах этанола, либо гидроксильные группы, образующиеся в результате реакции обрыва растущего макрокатиона на противоионе [13].

Полимеризация St и его производных в присутствии BF₃OEt₂ протекает через обратимую активацию концевой гидроксильной группы растущей макромолекулы даже в присутствии избытка воды (рис. 1). Предполагается, что добавленная вода выступает в качестве обратимого агента обрыва цепи, обеспечивая тем самым протекание контролируемой полимеризации.

В оптимизированных условиях, т. е. при [pMOSt-OH] ≥ 19 ммоль/л; [H₂O] = 0,12 моль/л $([H_2O]/[BF_3OEt_2] = 3:1)$, успешно реализована частично контролируемая КП циклопентадиена в присутствии каталитической системы pMOSt-OH/BF₃OEt₂ в смеси растворителей CH₃CN/CH₂Cl₂ при 20 °C [15]. В указанных условиях были получены полициклопентадиены с контролируемой молекулярной массой (*M_n* ≤ 3000 Да) и узким ММР ($M_w/M_n \le 1,7$). Содержание 1,4-звеньев в цепи полимера составляет порядка 55-60% независимо от условий полимеризации, а значения ненасыщенности полициколопентадиена, синтезированного при высоких концентрациях инициатора, близки к теоретическому значению (0,5), что указывает на отсутствие побочных реакций с участием двойных связей основной цепи полимера [15].

Резюмируя эффективность использования BF_3OEt_2 в качестве соинициатора контролируемой КП, можно отметить, что большой избыток воды по отношению к кислоте Льюиса может быть использован только для активных мономеров pHOSt и pMOSt (табл. 1).

В случае St, pMSt, pClSt, pClMSt и CPD полимеризация протекает только при введении в систему небольшого количества воды (табл. 1). К преимуществам систем на основе BF₃OEt₂ следует отнести возможность использования реагентов и растворителей без глубокой осушки, а также относительно высокие температуры реакции. Однако синтезированные полимеры характеризуются невысокими молекулярными массами ($M_n \le 15000$ Да), а для их получения используются токсичные органические растворители (CH₂Cl₂, CH₃CN). Кроме того, к недостаткам каталитических систем на основе BF₃OEt₂ следует отнести присутствие двух

Рисунок 1 — Механизм KII St на каталитической системе pMOSt–OH/BF₃OEt₂ в присутствии воды Fig. 1 — Mechanism of cationic polymerization of styrene with pMOSt–OH/BF₃OEt₂ catalyst system in the presence of water

Таблица 1 — Полимеризация St и его производных в присутствии BF_3OEt_2 Table 1 — Polymerization of styrene and its derivatives in the presence of BF_3OEt_2

Параметр	pHOSt	pMOSt	St	pMSt	pClSt	pClMSt	CPD
M _n (кDa)	6	6	10	15	15	8	3
M_w/M_n	≤1,4	≤1,3	≥1,8	≥1,5	≥1,5	1,5–2,0	1,7
[H ₂ O]/[BF ₃ OEt ₂]	100	20	2,2	1,6	0,8	0,8	3,0

различных концевых групп, что существенно затрудняет использование таких полимеров в синтезе более сложных макромолекулярных структур [10, 13].

Трис(пентафторфенил)боран (В(С6F5)3) является коммерчески доступной, стабильной на воздухе и в воде кислотой Льюиса. Теоретические и экспериментальные физико-химические исследования показали, что В(С6F5)3 не разлагается в воде, а обратимо образует с водой комплексы состава В(С6F5)3×nH₂O, где n = 1-3 [16–20]. Это соединение было исследовано в качестве со-инициатора КП *п*-метоксистирола [21, 22], St [23] и циклопентадиена [24] в присутствии воды.

Контролируемая КП *п*-метоксистирола протекает в присутствии каталитической системы pMOSt– OH/B(C₆F₅)₃ в смеси растворителей CH₃CN/CH₂Cl₂ (1:1 об. ч.) при 22 °C и различном содержании воды по отношению к кислоте Льюиса $[H_2O]/[B(C_6F_5)_3] = 0-20$. В результате был получен полимер с $M_n = 10000$ Да и узким ММР $(M_w/M_n \le 1,3)$ [22]. Было показано, что контролируемая полимеризация реализуется за счет обратимой активации концевых гидроксильных групп под действием $B(C_6F_5)_3$, что подтверждается ростом молекулярной массы поли(*n*-метоксистирола) с ростом конверсии мономера [21, 22].

Предполагаемый механизм КП *n*-метоксистирола на каталитической системе pMOSt–OH/B(C_6F_5)₃ в присутствии избытка воды по отношению к кислоте Льюиса представлен на рис. 2.

Согласно предложенному механизму, свободная кислота Льюиса, образующаяся при диссоциации комплекса $B(C_6F_5)_3$ с водой или ацетонитрилом, участвует в актах инициирования и роста цепи.

Рисунок 2 — Механизм полимеризации *n*-метоксистирола на каталитической системе pMOSt–OH/B(C₆F₅)₃ в присутствии избытка воды по отношению к кислоте Льюиса

Fig. 2 — Mechanism of *p*-methoxystyrene polymerization with pMOSt–OH/B(C_6F_5)₃ catalytic system in the presence of excess of water towards Lewis acid

Следует отметить, что комплекс B(C₆F₅)₃×2H₂O также может инициировать полимеризацию через образование протона или иона гидроксония, однако вклад протонного инициирования в механизм реакции незначителен даже в присутствии большого избытка воды по отношению к кислоте Льюиса ([H₂O]/[B(C₆F₅)₃]=20) [21]. Рост цепи осуществляется за счет присоединения мономера к активному центру, образующемуся в результате активации кислотой Льюиса «спящего» центра с концевой гидроксильной группой (см. рис. 2). Как правило, время жизни активного центра значительно меньше, чем «спящего», поэтому в ходе полимеризации цикл «ионизация «спящего» центра-присоединение мономера-образование «спящего» центра» осуществляется многократно [21].

Каталитическая система pMOSt-OH/B(C₆F₅)₃ проявляет высокую эффективность в контролируемой полимеризации СРД при 20 °С в смеси растворителей CH₂Cl₂/CH₃CN (4:1 об. ч.) в присутствии избытка воды по отношению к кислоте Льюиса ([H₂O]/[B(C₆F₅)₃] = 2,0–5,5). В результате был синтезирован полициклопентадиен с контролируемой M_n до 5000 Да и узким ММР ($M_w/M_n = 1, 1-1, 5$), содержащий преимущественно гидроксильные концевые группы $F_n(\omega) = 0,8-0,9$. Увеличение количества воды в системе приводило к уменьшению молекулярной массы и уширению ММР [24]. Полициклопентадиен, полученный на каталитической системе pMOSt-OH/B(C₆F₅)₃, в отличие от полимеров, синтезированных в присутствии системы pMOSt-OH/BF₃OEt₂ [15], характеризуется более низкой полидисперсностью и более высоким содержанием гидроксильных концевых групп.

Контролируемая КП St реализована в присутствии каталитической системы pMOSt-OH/B(C₆F₅)₃ в CH₂Cl₂ при небольшом избытке воды по отношению к кислоте Льюиса ([H₂O]/[B(C₆F₅)₃] = 2) при 20 °C [23]. В этих условиях был синтезирован полистирол с контролируемой молекулярной массой (*M_n* до 8000 Да) и относительно узким ММР ($M_w/M_n = 1,5-1,6$). Следует отметить, что полимеризация полностью ингибируется в смеси CH₃CN / CH₂Cl₂, являющейся оптимальной реакционной средой для полимеризации pMOSt [21] и CPD [24]. На основании анализа природы и содержания концевых групп показано, что полимеризация St, как и pMOSt [21] и CPD [24], протекает по механизму «живых» цепей за счет обратимой активации «спящей» макромолекулы с концевой гидроксильной группой.

Таким образом, специфические кислоты Льюиса, устойчивые к гидролизу водой (BF₃OEt₂, B(C₆F₅)₃), позволяют осуществлять контролируемую КП ряда виниловых мономеров (pMOSt, CPD, St) в присутствии избытка воды по отношению к кислоте Льюиса. Было показано, что для обеих кислот Льюиса наиболее подходящими инициаторами являются ароматические спирты, в частности, аддукт воды с *n*-метоксистиролом (pMOSt–OH) [13, 15, 21–24]. Максимальное количество воды, которая может

быть введена в систему без потери контроля над процессом полимеризации, уменьшается с понижением активности полимеризуемого мономера. Так, максимальное соотношение [H₂O]/[LA] составляет 20, 5 и 2 для полимеризации *п*-метоксистирола, циклопентадиена и St соответственно. В указанных условиях были синтезированы полимеры с контролируемой молекулярной массой (до *M_n* ~ 10000 Да) и относительно узким MMP (M_w/M_n): <1,3 (pMOSt), 1,2-1,6 (CPD) и 1,5-1,8 (St). Преимуществом использования BF₃OEt₂ в качестве соинициатора является дешевизна данной кислоты Льюиса, тогда полимеры, полученные в присутствии как В(С₆F₅)₃ характеризуется более низкой полидисперсностью, а также более высокой среднечисловой функциональностью (особенно по концевым гидроксильным группам).

В заключение также следует отметить, что ряд трифторметансульфонатов: Sc(OTf)₃, Y(OTf)₃, Cu(OTf)₂, Bi(OTf)₃) [25] и галогениды индия [26] являются эффективными катализаторами полимеризации *n*-метилстирола (pMSt) и индена в присутствии воды при 60 °C в ксилоле. В результате были получены низкомолекулярные полимеры ($M_n = 1000-11000$ Да) с достаточно узким MMP ($M_w/M_n = 1, 1-1, 8$) [25, 26].

Катионная полимеризация в водных или водноорганических средах

Как было показано выше, при использовании специфических кислот Льюиса, устойчивых к гидролизу, реализована КП St, его производных и циклопентадиена при высоких температурах (0-20 °C) и в неосушенных растворителях, что способствует существенному снижению энергоемкости процесса. Проведение КП в эмульсии или суспензии позволило бы существенно снизить энергозатраты на охлаждение и исключить локальные перегревы в системе, поскольку реакция протекала бы в каплях мономера или мицеллах. Несмотря на высокую чувствительность катионных соинициаторов к гидролизу, на сегодняшний день предложено несколько типов катализаторов, позволяющих проводить КП в водных средах: (1) сильные кислоты Бренстеда; (2) трифторметансульфонаты редкоземельных металлов; (3) пентафторфенилборан, хелатные дибораны и M(C₆F₅)₃, где M — это Al, Ga; (4) комплексы поверхностно-активных веществ (ПАВ) с кислотами Льюиса.

Сильные кислоты Бренстеда как катализаторы эмульсионной полимеризации *п*-метоксистирола. Одним из наиболее простых катализаторов эмульсионной КΠ pMOSt является додецилбензолсульфокислота (DBSA), которая выполняет одновременно роль инициатора и ПАВ [27, 28]. Полимеризация pMOSt, катализируемая DBSA, протекает с невысокой скоростью (~100% конверсии мономера за 20 ч при 40 °C), а образующиеся полимеры характеризуются низкой *M_n* (≤1000 Да) [27]. Использование трифторметановой кислоты в сочетании с неионогенным ПАВ позволяет увеличить молекулярную массу до *M_n* ~ 1700 Да, однако

за счет уменьшения скорости реакции: ~100% конверсии за 300 ч при 45 °C [28]. Следует отметить, что эти каталитические системы эффективны только в полимеризации pMOSt.

Трифторметансульфонаты редкоземельных металлов как катализаторы полимеризации *п*-метоксистирола. М. Sawamoto с сотрудниками провели суспензионную полимеризацию *п*-метоксистирола в присутствии аддукта pMOSt с HCl (pMOSt-HCl) в качестве инициатора и Yb(OTf)₃, где OTf — OSO₂CF₃, как соинициатора при 30 °С [29]. Полимеризация протекает с крайне низкой скоростью (~100% конверсии мономера за ~200 ч), которая может быть увеличена за счет использования в качестве инициатора полимеризации производной сульфокислоты HOSO₂PhNO₂ [30] или введения в систему катионных ПАВ, например додецилтриметиламмоний бромида [31]. Напротив, анионные или неионогенные ПАВ замедляют полимеризацию, что связано с образованием комплекса Yb(OTf)₃-ПАВ [31]. М_п синтезированных полимеров увеличивается с ростом конверсии только на ранних этапах полимеризации, после чего не изменяется.

Поли(*n*-метоксистирол) с $M_n \sim 20000$ Да был получен при использовании производных фосфорной кислоты в качестве инициатора (HO)₂P(O)Ph и Yb(OTf)₃ как соинициатора в смеси H₂O с толуолом [32].

Помимо Yb(OTf)₃, различные трифторметансульфонаты и тетрафторбораты также были протестированы как катализаторы суспензионной полимеризации pMOSt [31, 33]. Было показано, что скорость реакции в значительной степени зависит от природы металла и увеличивается в следующем ря- $Cu(OTf)_3 \sim Zn(OTf)_2 < Sn(OTf)_2 < Yb(OTf)_3$ [33]. **ЛV**: Среди различных трифторметансульфонатов редкоземельных металлов: Ln(OTf)₃, где Ln – это Dy, Sm, Gd, Yb, Nb, Yb(OTf)₃, а также Sc(OTf)₃ проявляют максимальную активность в суспензионной полимеризации pMOSt, тогда как природа катализатора оказывает незначительное влияние на M_n и ММР синтезируемых полимеров [31, 33].

Исчерпывающее исследование механизма КП *n*-метоксистирола в присутствии Yb(OTf)₃ как соинициатора было выполнено F. Ganachaud с сотрудниками [34, 35]. Было установлено, что Yb(OTf)₃ практически полностью диссоциирует в воде на Yb³⁺ и CF₃SO₃⁻, но не подвергается глубокому гидролизу с образованием неактивных гидроксидов как AlCl₃ или TiCl₄ [35]. Согласно F. Ganachaud с сотрудниками, полимеризация pMOSt в системах на основе Yb(OTf)₃, подобно процессам, катализируемым DBSA, протекает на границе раздела фаз. В качестве инициатора выступает трифторметановая кислота, образующаяся при частичном гидролизе Yb(OTf)₃ [36], а в качестве соинициатора — непродиссоциированный Yb(OTf)₃ (рис. 3). После инициирования цепь растет вплоть до ее обрыва/передачи на молекулу воды, что приводит к образованию макромолекулы с концевой гидроксильной группой.

Следует отметить, что Yb(OTf)3 также соинициирует суспензионную КП изобутилвинилового эфира (IBVE) с образованием полимеров с $M_n = 3000-6000$ Да и широким ММР ($M_w/M_n = 2,0-$ 3,4) [29]. Фотоинициированная полимеризация IBVE в присутствии Ph₂I⁺X⁻, где X — это Cl, Br, I, в качестве фотоинициатора и Yb(OTf)3 в качестве соинициатора в смеси CH₃CN/H₂O (1:1 об. ч.) способствует синтезу полимеров с $M_n = 1000-2000$ Да и достаточно узким MMP ($M_w/M_n < 1,3$) [37]. Суспензионная полимеризация IBVE с использованием гетерополикислот и их солей (H₃PW₁₂O₄₀, AlPW₁₂O₄₀, FePW₁₂O₄₀, Na₃PW₁₂O₄₀) как катализаторов при 0 °C протекает с высокой скоростью (~100% конверсии мономера за 1 мин), а образующиеся полимеры характеризуются низкой молекулярной массой $(M_n = 1200-4000 \text{ Да})$, относительно широким ММР (*M_w*/*M_n* ~ 3,0) [38]. Полиизобутилвиниловый эфир с высоким выходом (>85%) и M_n = 6000-9000 Да был синтезирован при полимеризации IBVE в дисперсии H_2O/μ -гексан (1 : 1 об. ч.) при T > 0 °C, смесь аммиачного буфера (рН = 10) или 20% раствора NaCl и *н*-гексана (1 : 1 об. ч.) при $T \le 0$ °C) в присутствии BF₃OEt₂ [39]. Проведение полимеризации в прямой эмульсии (вода-ПАВ-мономер) позволяет получать полимеры с выходом 50-60% и низкой *M_n* ≤ 2000 Да, тогда как использование эмульсии (вода-ПАВ-н-гексанобратной мономер) способствует увеличению как выхода полимера (85–96%), так и его $M_n = 4500-5500$ Да. Следует отметить, что в присутствии большего количества воды ([H₂O] = 1,6 М) или в водной суспензии, BF₃OEt₂ эффективен в реализации КП только наиболее активных в КП мономеров (IBVE) из-за конкурирующей росту цепи реакции гидролиза кислоты Льюиса. В данном случае скорость роста цепи существенно выше скорости гидролиза соинициатора, что позволяет проводить процесс до высоких степеней конверсии мономера. При полимеризации менее активного мономера, St, скорость гидролиза кислоты Льюиса сравнима или выше скорости роста цепи, что приводит к прекращению полимеризации при низких конверсиях мономера (<5%) [13, 15].

Рисунок 3 — Механизм полимеризации pMOSt в эмульсии в присутствии $Yb(OTf)_3$ Fig. 3 — Mechanism of polymerization of pMOSt emulsion in the presence of $Yb(OTf)_3$

Хелатные дибораны и М(С₆F₅)₃ (M=Al, Ga) в качестве катализаторов суспензионной полимеризации. Хелатные дибораны (о-С₆F₄[B(C₆F₅)₂]₂, *о*-С₆F₄(9-B(С₁₂F₈)₂, где 9-B(С₁₂F₈)₂ — это 1,2,3,4,5,6,7,8октафторо-9-борофлуорен) показали умеренную активность в суспензионной полимеризации изобутилена (IB) (выход полимера 20-80%) при -60 °C и позволили впервые синтезировать высокомолекулярные полиизобутилены (*M_n* = 10000–100000 Да, *M_w/M_n* = 2–4) [40, 41]. Однако в качестве дисперсионной среды была использована не вода, а водные растворы таких электролитов как LiCl (23%), H₂SO₄ (38%) и HBF₄ (48%). Следует также отметить, что введение ПАВ во всех случаях приводило к заметному снижению выхода полимера, что обусловлено увеличением содержания воды, участвующей в необратимом обрыве цепи, в каплях мономера или мицеллах. Уменьшение выхода полимера с повышением температуры реакции также связано с увеличением содержания воды в каплях мономера [40, 41]. Другие кислоты Льюиса (В(С₆F₅)₃, 9,10-(C₆F₅B)₂C₁₂F₈, [(Et₂O)₂H][B(C₆F₅)₄]), устойчивые к гидролизу в воде, не активны в суспензионной полимеризации IB. Поэтому, предположили, что ключевой стадией полимеризации является формирование µ-аква комплекса, способного протонировать IB (рис. 4). Образование указанного аква-комплекса возможно только в случае использования хелатных диборанов в качестве катализаторов. Позже было показано, что Al(C₆F₅)₃ и Ga(C₆F₅)₃ проявляют более высокую активность в суспензионной полимеризации IB и St, чем *о*-С₆F₄[B(С₆F₅)₂]₂, позволяя получать полимеры с $M_n = 10000 - 100000$ Да и $M_w/M_n = 2 - 3$ при более высоких температурах (от 0 °С до -20 °С для St и от -40 °С до -60 °С для IB) [42]. Высокая стоимость и низкая доступность, наряду с необходимостью использования водных растворов электролитов в качестве дисперсионной среды и низких температур является главным недостатком указанных катализаторов.

Пентафторфенилборан в качестве катализатора катионной полимеризации в водных средах. В водной суспензии без добавления сорастворителя (ацетонитрила) в присутствии пентафторфенилборана ($B(C_6F_5)_3$) в качестве соинициатора и pMOSt–OH в качестве инициатора протекает обычная (неконтролируемая) КП *п*-метоксистирола, в результате которой получены полимеры с молекулярной массой до 5000 Да и достаточно широким MMP ($M_w/M_n = 1,8-2,0$) за 10 ч [21]. Контролируемая полимеризация возможна только в присутствии значительных количеств ацетонитрила, который способен образовывать комплексы с В(С₆F₅)₃, тем самым уменьшая возможность протонного инициирования полимеризации. Образование комплексов ацетонитрила с В(C₆F₅)₃ было подтверждено методом спектроскопии ЯМР ¹⁹F [21]. Исследование КП *п*-метоксистирола в присутствии ацетонитрила покачто при объемном соотношении зало. $[H_2O]/[CH_3CN] = 3:2$ в системе реализуется контролируемая КП. Так, молекулярная масса полимера растет с ростом конверсии мономера до 3000 Да, а ММР при этом остается узким на протяжении всей реакции $(M_w/M_n \le 1,3)$ [21]. Следует отметить, что хотя полимеризация и протекает по механизму «живых» цепей, M_n синтезируемых полимеров ограничена значением 3000 Да. Полимеризация характеризуется индукционным периодом около 1-2 ч и протекает только при 40 °С. Методом MALDI-TOF масс-спектрометрии было установлено, что синтезированный поли(п-метоксистирол) содержит преимущественно гидроксильные концевые группы [21]

На основании полученных данных авторами работы [21] был предложен механизм, описывающий полимеризацию pMOSt в присутствии каталитической системы pMOSt–OH/B(C_6F_5)₃ в смеси H₂O/CH₃CN (3 : 2 об. ч.) (рис. 5).

Инициирование полимеризации осуществляется *п*-метоксистирольным катионом или протоном (ионом гидроксония), образовавшимися при взаимодействии инициатора или воды с B(C₆F₅)₃. Рост цепи протекает вплоть до ее обрыва под действием молекулы воды с образованием олиго(*n*-метоксистирола) с концевой гидроксильной группой. Такая концевая группа может реактивироваться под действием $B(C_6F_5)_3$, генерируя олиго(*n*-метоксистирольный) катион, который способен участвовать в росте цепи. Однако, поскольку полимеризация протекает на границе раздела фаз [6, 21], олигомеры, достигая определенной длины цепи (обычно 8-10 мономерных единиц), становятся достаточно гидрофобными и поэтому проникают внутрь капли мономера. Напротив, В(С₆F₅)₃, гидратированный несколькими молекулами воды, является достаточно гидрофильным и остается на границе раздела фаз. Результатом этого является ограничение M_n полимеров значениями $M_n < 1500$ Да.

Следует отметить, что данный процесс, называемый «эффектом критической степени полимеризации», характерен для подавляющего большинства

Рисунок 4 — Механизм полимеризации IB в присутствии $o-C_6F_4[B(C_6F_5)_2]_2$ Fig. 4 — Mechanism of isobutylene polymerization in the presence of $o-C_6F_4[B(C_6F_5)_2]_2$

Рисунок 5 — Механизм полимеризации *n*-метоксистирола на каталитической системе pMOSt–OH/B(C₆F₅)₃ при объемном соотношении [H₂O]/[CH₃CN] = 3 : 2

Fig. 5 — Mechanism of cationic polymerization of *p*-methoxystyrene with pMOSt–OH/B(C_6F_5)₃ catalytic system at [H₂O]/[CH₃CN] = 3 : 2 volume ratio

известных примеров КП в водных средах [6]. Напротив, при полимеризации pMOSt на каталитической системе pMOSt–OH/B(C₆F₅)₃ в смеси H_2O/CH_3CN (3:2 об. ч.) процесс протекает далее в каплях мономера по механизму «живых» цепей за счет обратимой реактивации «спящих» макромолекул с концевыми гидроксильными группами под действием B(C₆F₅)₃, который диффундирует внутрь капель мономера в форме комплекса с CH₃CN (рис. 5). Необходимо подчеркнуть, что данная система представляет собой первый пример реализации контролируемой КП в водных средах [21].

Показано [43], что система рМОSt–OH/B(C₆F₅)₃ инициирует контролируемую КП *n*-гидроксистирола (pHOSt) при 20 °C в дисперсии (фосфатный буфер pH = 7 : CH₃CN (4 : 1 об. ч.)) и эмульсии при использовании BRIJ®97 в качестве ПАВ, позволяя получать полимеры с M_n до 6000 Да и относительно узким MMP ($M_w/M_n < 1,4$) с высоким выходом за 24 ч и 6 ч соответственно.

Каталитическая система рМОSt–OH/B(C₆F₅)₃ была также исследована в полимеризации St в водной суспензии при 20 °C. За 100 ч образуется полимер с $M_n = 2000$ Да и узким ММР ($M_w/M_n < 1,7$). Интересно отметить, что протонное инициирование в случае полимеризации St не происходит. Методом спектроскопии ЯМР ¹Н установлено, что полистирол содержит фрагмент инициатора в головной группе и гидроксильную концевую группу с функциональностью близкой к 1 [23].

В суспензии и эмульсии в присутствии каталитической системы pMOSt–OH/B(C₆F₅)₃ циклопентадиен олигомеризуется с образованием низкомолекулярного продукта ($M_n \le 1000$ Да) с умеренно широким MMP ($M_w/M_n \sim 2,2$) [24]. В водной суспензии конверсия мономера достигает порядка 40% за 30 ч, а затем практически не изменяется в течение 50 ч. В эмульсии в присутствии DBSA в качестве ПАВ и инициатора и $B(C_6F_5)_3$ в качестве соинициатора получены полициклопентадиены с конверсией мономера, близкой к количественной (более 95%).

Полициклопентадиен, полученный в водной суспензии при полимеризации CPD на инициирующей системе pMOSt–OH/B(C₆F₅)₃, как и полимер, синтезированный в смеси CH₂Cl₂/CH₃CN, содержит фрагмент инициатора в качестве головной группы $(F_n(\beta) = F_n(\varepsilon) \sim 1,0)$ и концевую гидроксильную группу $(F_n(\omega) = 0,8-0,9)$. Однако в отличие от полимеризации в смеси CH₂Cl₂/CH₃CN, полимеризация циклопентадиена в водных средах не региоселективна: содержание 1,2- и 1,4 структур в полимерах практически одинаково и не зависит от способа проведения полимеризации (суспензионная, эмульсионная).

Линейный *транс*-1,4-полиизопрен (до 96% *транс*-звеньев) с высоким содержанием двойных связей в основной цепи (>97%) был получен методом КП изопрена (IP) на каталитической системе pMOSt–OH/B(C₆F₅)₃ в водных средах: суспензия; дисперсия H₂O/CH₃CN (3 : 2 об. ч.) и эмульсия (DBSA в качестве ПАВ) при 20 °C [44]. Наибольшая конверсия мономера (51% за 138 ч) и $M_n = 1040$ Да были получены при проведении процесса в суспензии. Получение линейного полиизопрена в данном случае достигается за счет полного подавления побочных реакций с участием двойной связи основной цепи полимера с растущими макрокатионами.

Основываясь на полученных результатах [7], нами был предложен и обоснован общий механизм полимеризации виниловых мономеров в водных средах (рис. 6).

Согласно предложенному механизму, все элементарные акты полимеризации (инициирование, рост и обрыв цепи) осуществляются на границе раздела фаз. Инициирование осуществляется под действием H₃O⁺ или метоксистирольного катиона, образовавшихся при взаимодействии B(C₆F₅)₃ с H₂O или pMOSt-OH соответственно. Рост цепи протекает за счет последовательного присоединения молекул мономера к H₃O⁺ или pMOSt⁺ вплоть до необратимого обрыва цепи под действием H_2O . Образовавшиеся олигомеры аккумулируются на границе раздела фаз, что способствует уменьшению ее полярности, т. е. содержанию Н2О. Результатом этого является увеличение M_n с ростом конверсии мономера, наблюдаемое при полимеризации St [23, 43], IP [44] или CPD [24, 43]. Таким образом, полимеризация этих мономеров не контролируемая, хотя и позволяет получать полимеры с высоким содержанием концевых гидроксильных групп [23, 24, 43, 44].

Другой отличительной особенностью КП в водных средах является систематически наблюдаемое ограничение *M_n* синтезированных полимеров значениями <2500 Да. Этот эффект (эффект критической степени полимеризации (СП)) связан с достижением макромолекулами определенной длины цепи, когда они становятся достаточно гидрофобными, теряют свою поверхностную активность и диффундируют с межфазной границы внутрь капли мономера. Соинициатор, например B(C₆F₅)₃, в силу его гидратации водой, является достаточно гидрофильным. Он находится на границе раздела фаз или в водной фазе и поэтому не может реактивировать находящиеся внутри капель мономера макромолекулы с концевыми гидроксильными группами. Все это приводит к ограничению M_n полимера и, в случае полимеризации менее активных мономеров (St, IP), к остановке реакции при неполных конверсиях мономера [7, 23, 43, 44].

В некоторых случаях (полимеризация pMOSt и pHOSt), в результате образования комплекса $B(C_6F_5)_3 \times CH_3CN$, способного проникать в органическую фазу (внутрь капли мономера), процесс протекает в контролируемом режиме за счет обратимой реактивации полимеров с концевой гидроксильной группой [21, 43]. Однако из-за высокой активности этих мономеров в КП, помимо специально вводимого инициатора (pMOSt–OH), H₂O также является эффективным инициатором полимеризации pMOSt и pHOSt. Это приводит к постоянному генерированию новых цепей на границе раздела фаз, что затрудняет получение высокомолекулярного полимера [21, 43].

Таким образом, инициирующая система pMOSt-ОН/В(C₆F₅)₃ оказалась эффективной для реализации КП целого ряда виниловых мономеров в водных средах: *п*-метоксистирола [21], *п*-гидроксистирола [43], St [23], циклопентадиена [24, 43] и IP [44]. Так, полимеризация наиболее активных мономеров (pMOSt, pHOSt) протекает в режиме «живых» цепей, позволяя синтезировать полимеры с низкой молекулярной массой (*M_n* < 4500 Да), концевыми гидроксильными группами и узким MMP ($M_w/M_n < 1,5$) (табл. 2). Формированию полимеров с большей M_n в данном случае препятствует конкурентное протонное инициирование, приводящие к постоянному генерированию новых макромолекул. Для менее активных мономеров (St, CPD), введение в систему ацетонитрила приводит к полному ингибированию полимеризации, по-видимому, за счет образования прочного комплекса CH₃CN с кислотой Льюиса [23, 24]. Суспензионная и эмульсионная КП этих мономеров, а также IP, протекает через контролируемое

Рисунок 6 — Механизм КП виниловых мономеров в водных средах. R = H, pMOSt; A = LAOH; M: мономер Fig. 6 — Mechanism of cationic polymerization of vinyl monomers in aqueous media. R = H, pMOSt; A = LAOH; M: monomer

Таблица 2 — Сравнительная характеристика КП виниловых мономеров в различных средах в присутствии $B(C_6F_5)_3^{10}$ Table 2 — Comparative study of the cationic polymerization of vinyl monomers in the presence of $B(C_6F_5)_3$ in different media ¹⁰							
Дисперсная система	pMOSt	pHOSt	St	CPD	IP		

Дисперсная система	pMOSt	pHOSt	St	CPD	IP
суспензия	B, Y $M_n < 5000$ $M_w/M_n \le 1.8$	_2)	B, X $M_n < 2000$ $M_{\nu}/M_n \le 1,7$	B, X $M_n < 1000$ $M_w/M_n \le 2,2$	B, X $M_n < 1100$ $M_w/M_n \le 1,7$
дисперсия	A, Y $M_n < 3000$ $M_w/M_n \le 1,3$	A, Y $M_n < 4500$ $M_w/M_n \le 1.5$	_3)	_3)	$\begin{array}{c} \text{B, X} \\ M_n < 900 \\ M_w / M_n \le 1.5 \end{array}$
эмульсия	B, Y $M_n < 5000$ $M_w/M_n \le 1.8$	A, Y $M_n < 4500$ $M_w/M_n \le 1.5$	$\begin{array}{c} \text{B, X} \\ M_n < 2000 \\ M_w/M_n \le 2,0 \end{array}$	B, Y $M_n < 1500$ $M_w/M_n \le 2,0$	B, X $M_n < 750$ $M_w/M_n \le 1.5$

¹⁾тип полимеризации: А: контролируемая полимеризация; В: обычная (не контролируемая) полимеризация; Х: контролируемое инициирование; Ү: конкурентное инициирование водой.

²⁾полимеризация не исследовалась

³⁾полимеризация не протекает

⁴⁾Смесь H₂O/CH₃CN или фосфатный буфер pH=7/CH₃CN

инициирование (только инициатор генерирует макромолекулу), рост цепи и необратимый обрыв цепи на воде (табл. 2). Это позволяет получать полимеры, содержащие в своем составе фрагмент инициатора в качестве головной группы, и гидроксильную концевую группу (за исключением полимеризации IP). Следует отметить, что M_n синтезируемых полимеров в этом случае определяется их поверхностной активностью (эффект критической степени полимеризации, см. рис. 6) и полярностью границы раздела фаз, и не превышает 2000 Да (табл. 2). Несмотря на указанные выше ограничения, системы на основе В(С₆F₅)₃ позволили впервые провести КП целого ряда виниловых мономеров в водных средах. Это стало возможным благодаря тому, что B(C₆F₅)₃, в отличие от BF₃OEt₂, действительно не гидролизуется в воде в течение длительного времени.

Однако, одним из основных недостатков каталитических систем на основе $B(C_6F_5)_3$ является невысокая M_n синтезируемых полимеров < 5000 Да изза протекания полимеризации на границе раздела фаз (эффект критической степени полимеризации, см. рис. 6). Очевидно, что для получения полимеров с высокой M_n в водных средах необходимо, чтобы процесс осуществлялся не на границе раздела фаз, а внутри капель мономера/мицеллах.

Комплексы кислот Льюиса с поверхностноактивными веществами. S. Kobayashi с сотрудниками впервые показали, что комплексы кислот Льюиса с ПАВ (LASC) являются чрезвычайно эффективными катализаторами целого ряда органических реакций в воде [45-48]. Так, комплекс YbCl₃ с додецилсульфатом натрия был использован для проведения КП pMOSt в водной эмульсии [49]. Однако этот LASC был полностью неактивен в полимеризации изза низкой растворимости как в органической фазе (мономер), так и в дисперсионной среде (вода) [49]. Концепция использования LASC для синтеза высокомолекулярных полимеров в водной эмульсии была в дальнейшем развита F. Ganachaud с сотрудниками [50]. Было показано, что только LASC, генерирующие мицеллы в воде, способен катализировать КП в водной эмульсии. Так, LASC, полученный из YbCl₃ и полиоксиэтиленлаурилсульфата в сочетании со слабой гидрофобной кислотой Бренстеда (C₆Cl₅OH) катализирует полимеризацию pMOSt, позволяя получать полимеры с $M_n \sim 40000$ Да [50]. Однако полимеризация характеризуется крайне низкой скоростью (100% конверсии мономера за 10 дней при 60 °C) и длительным индукционным периодом (порядка 100 ч). Более того, данный LASC эффективен только в полимеризации pMOSt и полностью неактивен в полимеризации других, менее активных, мономеров (например, St, IB или IP) [50].

В статье [51] предложен новый тип LASC на основе комплексов солей редкоземельных металлов (YbX₃, где X — это Cl, NO₃, OTf) и хлоридов In (III), Sc(III), Y(III) с сильно разветвленным додецилбензолсульфонатом натрия (NaDBS) в качестве ПАВ. Такие LASC проявляют высокую активность не только в эмульсионной КП *п*-метоксистирола, но и в полимеризации менее активных мономеров — St и [51]. В результате при помощи LASC-IP катализируемой КП впервые получены высокомолекулярные поли-(*n*-метоксистирол) с $M_n \approx 36000$ Да, *транс*-1,4-полиизопрен с $M_n \approx 97000$ Да и высокой степенью ненасыщенности основной цепи (более 94%), полистирол с $M_n \approx 182000$ Да, а также высокомолекулярные случайные и мультиблоксополимеры St с IP ($M_n = 80000 - 150000$ Да), представляющие большой интерес в качестве альтернативы бутадиенстирольному каучуку и другим эластомерам [51].

Более подробно особенности протекания КП в присутствии LASC были изучены для полимеризации *n*-метоксистирола [52]. Экспериментальным путем установлено, что оптимальное соотношение YbCl₃/NaDBS = 1/4, при котором наблюдается максимальная скорость полимеризации (100% конверсии мономера за ~15 ч) и короткий индукционный период (~3 ч). Существенное влияние на процесс полимеризации оказывает как природа лиганда при металле, так и природа самого металла. При использовании различных солей иттербия для образования LASC выявлено увеличение скорости полимеризации и уменьшение индукционного периода в ряду

Yb(NO₃)₃ < YbCl₃ < YbBr₃ < Yb(OTf)₃. Авторами было замечено, что данная последовательность совпадает с рядом кислотности кислот Бренстеда, образующихся при частичном гидролизе солей иттербия: HOTf > HBr > HCl > HNO₃. На основании этого было выдвинуто предположение, что различия в величине периода ингибирования и скорости полимеризации могут быть объяснены различной растворимостью этих кислот в каплях мономера/мицеллах. Иное объяснение основано на увеличении эффективности инициирования с ростом силы кислоты Бренстеда [52]. Увеличение скорости реакции и уменьшение индукционного периода также наблюдалось в ряду YbCl₃<ScCl₃≈InCl₃. Более высокая эффективность LASC с ScCl₃ и InCl₃ предположительно связана с меньшими значениями констант гидролиза для этих соединений в сравнении с YbCl₃, что приводит к образованию большего количества кислоты Бренстеда [52]. Более того, за счет меньшего ионного радиуса скандия и индия LASC на основе их солей являются более сильными кислотами Льюиса, и, следовательно, более эффективными со-инициаторами полимеризации. Подтверждением большей активности LASC на основе ScCl₃ и InCl₃ является возможность проведения полимеризации п-метоксистирола при 40 °С и 50 °С, тогда как LASC на основе YbCl3 соинициирует полимеризацию только при 60 °C [52].

Высокая M_n полимеров при использовании LASC в качестве катализаторов достигается за счет локализации процесса полимеризации внутри капли мономера/мицеллы, а не на межфазной границе. Это обусловлено образованием достаточно гидрофобных комплексов между катионом редкоземельного металла и додецилбензолсульфонатными анионами, способных диффундировать в органическую фазу (рис. 7, *a*). Образование данного комплекса было подтверждено посредством спектроскопии ЯМР ¹H [52]. Данные комплексные соединения, диффундируя в органическую фазу, ассоциируются с инициатором (HX, где X — это Cl, NO₃, Br, OTf; H₂O; C₆Cl₅OH) с образованием небольшого количества объемных суперкислот (H⁺[LASCX]⁻) (рис. 7, *б*).

Далее весь процесс полимеризации протекает внутри капли мономера в три стадии: инициирование (очень медленное из-за низкой концентрации суперкислоты), рост цепи (осуществляется быстро, так как рост происходит на свободных ионах из-за образования объемного слабокоординирующего противоиона), обрыв цепи (цепь обрывается при контакте растущего макрокатиона с небольшими количествами воды, находящимися в органической фазе). Длительный процесс образования кислоты Бренстеда и диффундирования ее внутрь капли мономера/мицеллы объясняет период ингибирования, наблюдаемый в полимеризации, катализируемой LASC.

Недавно было показано [53], что LASC на основе YbCl3 и додецилбензолсульфоната натрия показал высокую эффективность в эмульсионной полимеризации β -мирцена, природного мономера. При 40 °C были получены поли-(β -мирцены) с высокой M_n до 150000 Да и низкой температурой стеклования $T_c < -63$ °C. Согласно данным спектроскопии ЯМР ¹³C синтезированный поли-(β -мирцен) характеризуется высокой долей 1,4-звеньев (~43% цис- и ~50% транс-конфигурации) в цепи полимера и

Рисунок 7 — Механизм: (*a*) образования LASC и кислоты (инициатора) *in situ* и (δ) полимеризации *n*-метоксистирола в присутствии LASC (M: Yb; Sc; In. X = OTf; Cl; Br; NO₃)

Fig. 7 — Mechanism: (*a*) formation of LASC and acid (initiator) *in situ* and (δ) *p*-methoxystyrene polymerization in the presence of LASC (M: Yb; Sc; In. X = OTf; Cl; Br; NO₃)

небольшим количеством звеньев в 3,4-конфигурации (7%). Показано, что поли-(β-мирцен) наряду с диадами, образованными в результате 1,4-присоединения «голова к хвосту», содержит в своем составе диады с инверсным присоединением 1,4-звеньев («голова к голове» (5-10%) и «хвост к хвосту» (23-28%)). LASC также показал высокую эффективность в эмульсионной КП β-мирцена и St, в результате которой получены случайные сополимеры с высокими M_n от 60000 Да до 120000 Да, характеризующиеся одним значением T_c от -43 °C до 15 °C) в зависимости от состава сополимера. Следует отметить, что авторами работы [53] была разработана простая процедура регенерации YbCl₃ из реакционной смеси, который показал высокую активность в КП *β*-мирцена эмульсии даже после пяти циклов его использования.

Таким образом, открытие LASC катализаторов предоставило новые возможности для КП, позволив расширить круг мономеров (*n*-метоксистирол, St, IP и β-мирцен), способных полимеризоваться в водной среде, позволив получать гомополимеры с высокой M_n от 36000 Да до 200000 Да), случайные и мультиблоксополимеры St с IP (M_n от 80000 Да до 150000 Да, а также случайные сополимеры St с β -мирценом (M_n от 60000 Да до 120000 Да) методом эмульсионной КП в мягких условиях. Исследование механизма КП показало, что получение высокомолекулярных полимеров в присутствии этих уникальных катализаторов обусловлено их способностью проникать внутрь капель мономера/мицелл. Результатом этого является смещение процесса полимеризации с межфазной границы внутрь капель мономера/мицелл, где содержание воды, а значит и скорость обрыва/передачи цепи через воду, существенно ниже, что способствует образованию высокомолекулярного полимера.

Выводы

Исследования КП в водной среде позволили решить несколько фундаментальных проблем этого процесса, затрудняющих или удорожающих его промышленное использование. Во-первых, КП в водных средах осуществляется при температурах 20-45 °C, тогда как традиционный процесс в органических растворителях протекает, как правило, при очень низких температурах (≤-80 °C). Вовторых, применение суспензионной и/или эмульсионной полимеризации позволяет осуществлять процесс без использования токсичных органических растворителей (CH₃Cl, CH₂Cl₂). Наконец, проведение полимеризации в микрореакторах (каплях мономера, мицеллах) способствует эффективному теплообмену и, соответственно, исключает локальные перегревы системы, характерные для КП в органических растворителях.

 $B(C_6F_5)_3$ является эффективным катализатором суспензионной и/или эмульсионной КП St, его производных, циклопентадиена и IP, позволяющим проводить процесс без использования токсичных органических растворителей (CH₃Cl, CH₂Cl₂) и при достаточно высоких температурах 20–45 °C. Однако, одним из основных недостатков каталитических систем на основе $B(C_6F_5)_3$ является невысокая M_n синтезируемых полимеров <5000 Да из-за протекания полимеризации на границе раздела фаз. Использование легко регенерируемых катализаторов на основе комплексов солей редкоземельных металлов (YbX₃, где X — это Cl, NO₃, OTf) и хлоридов In (III), Sc(III), Y(III) с сильно разветвленным додецилбензолсульфонатом натрия, которые способны проникать с межфазной границы внутрь капли мономера/мицеллы, позволило впервые получить высокомолекулярные полимеры на основе St, IP и β -мирцена ($M_n = 30000-200000$ Да) и их сополимеры ($M_n = 60000-150000$ Да) в водной эмульсии.

Таким образом, в настоящее время КП в водных средах является "зеленой" альтернативой традиционной КП, широко использующейся в про-С мышленности. использованием методов эмульсионной КП был впервые получен ряд новых эластомеров, в том числе на основе *β*-мирцена мономера из возобновляемых источников сырья. Для более интенсивного введения данного процесса в промышленную практику необходима тщательная оценка механических и эксплуатационных свойств резин на основе этих эластомеров. Не менее важной задачей с точки зрения промышленности является реализация катионной (со)полимеризации IB в водной среде — мономера, полимеризующегося только по катионному механизму.

Обозначения

ММР — молекулярно-массовое распределение; КП — катионная полимеризация; ПАВ — поверхностно-активные вещества; СП — степень полимеризации; CPD — циклопентадиен; DBSA — додецилбензолсульфокислота; $F(\varepsilon)$ — среднечисловая функциональность по головным группам; F(ω) среднечисловая функциональность по концевым группам; IB — изобутилен; IBVE — изобутилвиниловый эфир; IP — изопрен; LA — кислота Льюиса; LASC — комплексы кислот Льюиса с ПАВ; М металл; *М_n*, Да — среднечисловая молекулярная масса; М_w, Да — среднемассовая молекулярная масса; NaDBS — додецилбензолсульфонат натрия; OTf — OSO₂CF₃; pMOST — *п*-метоксистирол; рHOSt — п-гидроксистирол; St — стирол; T_c , °C температура стеклования.

Литература

- 1. Кеннеди Дж. Катионная полимеризация олефинов. М.: Мир, 1978. 430 с.
- Kennedy J. P., Iván B. I. Designed polymers by carbocationic macromolecular engineering: theory and practice. Munich; New York: Hanser, 1992. 240 p.
- Розенцвет В. А., Козлов В. Г., Монаков Ю. Б. Катионная полимеризация сопряженных диенов. М.: Наука, 2011. 238 с.
- Puskas J. E., Kaszas. G. Carbocationic polymerization // Encyclopedia of polymer science and technology / ed.: H. F. Mark, J. I. Kroschwitz. New York: Wiley-InterScience, 2003, vol. 5, pp. 382–418.
- Aoshima S., Kanaoka S. A renaissance in living cationic polymerization // Chemical Reviews, 2009, vol. 109, pp. 5245–5287.
- Kostjuk S. V. Recent progress in the Lewis acid co-initiated cationic polymerization of isobutylene and 1,3-dienes // RSC Ad-

vances, 2015, vol. 5, pp. 13125-13144.

- Kostjuk S. V., Ganachauad F. Cationic polymerization of vinyl monomers in aqueous media: from monofunctional oligomers to long-lived polymer chains // Accounts of Chemical Research, 2010, vol. 43, pp. 357–367.
- Satoh K., Kamigaito M., Sawamoto M. Direct living cationic polymerization of p-hydroxystyrene with boron trifluoride etherate in the presence of water // Macromolecules, 2000, vol. 33, pp. 5405–5410.
- Satoh K., Kamigaito M., Sawamoto M. Direct synthesis of amphiphilic random and block copolymers of p-hydroxystyrene and pmethoxystyrene via living cationic polymerization with BF₃OEt₂/ROH system // Macromolecules, 2000, vol. 33, pp. 5830–5835.
- Satoh K., Nakashima J., Kamigaito M., Sawamoto M. Novel BF₃OEt₂/R-OH initiating system for controlled cationic polymerization of styrene in the presence of water // Macromolecules, 2001, vol. 34, pp. 396–401.
- Kamigaito M., Nakashima J., Satoh K., Sawamoto M. Controlled cationic polymerization of p-(chloromethyl)styrene: BF₃catalyzed selective activation of a C-O terminal alcohol // Macromolecules, 2003, vol. 36, pp. 3540–3544.
- 12. Satoh K., Saitoh S., Kamigaito M. A linear lignin analogue: phenolic alternating copolymers from naturally occurring β methylstyrene via aqueous-controlled cationic copolymerization // Journal of the American Chemical Society, 2007, vol. 129, pp. 9586–9587.
- Radchenko A. V., Kostjuk S. V., Vasilenko I. V., Ganachaud F., Kaputsky F. N. Controlled/living cationic polymerization of styrene with BF₃OEt₂ as coinitiator in the presence of water: improvements and limitations // European Polymer Journal, 2007, vol. 43, pp. 2576–2583.
- Kanazawa A., Kanaoka S., Aoshima S. Major progress in catalysts for living cationic polymerization of isobutyl vinyl ether: effectiveness of a variety of conventional halides // Macromolecules, 2009, vol. 42, pp. 3965–3972.
- Radchenko A. V., Kostjuk S. V., Gaponik L. V. BF₃OEt₂coinitiated cationic polymerization of cyclopentadiene in the presence of water at room temperature // Polymer Bulletin, 2011, vol. 67, pp. 1413–1424.
- Beringhelli T., Maggioni D., D'Alfonso G. ¹H and ¹⁹F NMR investigation of the reaction of B(C₆F₅)₃ with water in toluene solution // Organometallics, 2001, vol. 20, pp. 4927–4938.
- Piers W. E., Chivers T. Pentafluorophenylboranes: from obscurity to applications // Chemical Society Reviews, 1997, vol. 26, pp. 345–354.
- Erker G. Tris(pentafluorophenyl)borane: a special boron Lewis acid for special reactions // Dalton Transactions, 2005, is. 11, pp. 1883–1890.
- 19. Danopoulos A.A., Galsworthy J. R., Green M. L. H., Doerrer L. H., Cafferkey S. Hursthouse M. B. Equilibria in the $B(C_6F_5)_3$ – H_2O system: synthesis and crystal structures of $H_2O \cdot B(C_6F_5)_3$ and the anions $[HOB(C_6F_5)_3]^-$ and $[(F_5C_6)_3B(\mu-OH)B(C_6F_5)_3]^-//$ Chemical Communications, 1998, pp. 2529–2560.
- Bergquist C., Bridgewater B. M., Harlan C. J., Norton J. R., Friesner R. A., Parkin G. Aqua, alcohol, and acetonitrile adducts of tris(perfluorophenyl)borane: evaluation of Brønsted acidity and ligand lability with experimental and computational methods // Journal of the American Chemical Society, 2000, vol. 122, pp. 10581–10590.
- Kostjuk S. V., Radchenko A. V., Ganachaud F. Controlled/living cationic polymerization of p-methoxystyrene in solution and aqueous dispersion using tris(pentafluorophenyl)borane as Lewis acid: acetonitrile does the job // Macromolecules, 2007, vol. 40, pp. 482–490.
- 22. Radchenko A. V., Kostjuk S. V., Vasilenko I. V. Ganachaud F., Kaputsky F. N., Guillaneuf Y. Kinetic study on the living/controlled cationic polymerization of p-methoxystyrene coinitiated by tris(pentafluorophenyl)borane // Journal of Polymer Science Part A: Polymer Chemistry, 2008, vol. 46, pp. 6928–6939.
- Kostjuk S. V., Ganachaud F. Cationic polymerization of styrene in solution and aqueous suspension using B(C⁶F⁵)³ as a water-tolerant Lewis acid // Macromolecules, 2006, vol. 39, pp. 3110–3113.
- 24. Kostjuk S. V., Radchenko A. V., Ganachaud F. Controlled cationic polymerization of cyclopentadiene with B(C₆F₅)₃ as a coinitiator in the presence of water // Journal of Polymer Science Part

A: Polymer Chemistry, 2008, vol. 46, pp. 4734-4747.

- Vergnaud J. Sarazin Y., Strub H., Carpentier J.-F. Water-tolerant catalyst system for the bulk cationic polymerization of paramethylstyrene and indene // European Polymer Journal, 2010, vol. 46, pp. 1093–1099.
- Bompart M., Vergnaud J., Strub H., Carpentier J.-F. Indium (III) halides as exceptionally active, water-tolerant catalysts for cationic polymerization of styrenics // Polymer Chemistry, 2011, vol. 2, pp. 1638–1640.
- Cauvin S., Sadoun A., Dos Santos R., Belleney J., Ganachaud F., Hemery P. Cationic polymerization of p-methoxystyrene in miniemulsion // Macromolecules, 2002, vol. 35, pp. 7919–7927.
- Cauvin S., Dos Santos R., Ganachaud F. On the key role of the interface in the cationic polymerization of p-methoxystyrene in miniemulsion // e-Polymers, 2003, vol. 3, art. 050.
- Satoh K., Kamigaito M., Sawamoto M. Controlled cationic polymerization of p-methoxystyrene in aqueous media with Yb(OTf)₃ // Macromolecules, 1999, vol. 32, pp. 3827–3832.
- Satoh K., Kamigaito M., Sawamoto M. Sulfonic acids as watersoluble initiators for cationic polymerization in aqueous media with Yb(OTf)₃ // Journal of Polymer Science Part A: Polymer Chemistry, 2000, vol. 38, pp. 2728–2733.
- Satoh K., Kamigaito M., Sawamoto M. Lanthanide triflatesmediated emulsion cationic polymerization of palkoxystyrenes in aqueous media // Macromolecules, 2000, vol. 33, pp. 4660–4666.
- 32. Storey R. F., Scheuer A. D. Aqueous cationic polymerization of p-methoxystyrene using hydrophilic phenylphosphonic acids // Journal of Macromolecular Science Part A: Pure and Applied Chemistry, 2004, vol. 41, pp. 257–266.
- Satoh K., Kamigaito M., Sawamoto M. Metal triflates and tetrafluoroborates as water-tolerant Lewis acids for cationic polymerization in aqueous media // Macromolecules, 2000, vol. 33, pp. 5836–5840.
- 34. Cauvin S., Ganachaud F., Touchard V., Hémery P., Leising F. Cationic polymerization of p-methoxystyrene in water with dodecylbenzenesulfonic acid and ytterbium triflate: evidence for an inverse emulsion process // Macromolecules, 2004, vol. 37, pp. 3214–3221.
- Cauvin S. Ganachaud F. On the preparation and polymerization of p-methoxystyrene miniemulsions in the presence of excess ytterbium triflate // Macromolecular Symposia, 2004, vol. 215, pp. 179–190.
- 36. Kobayashi S., Nagayama S., Busujima T. Lewis acid catalysts stable in water. Correlation between catalytic activity in water and hydrolysis constants and exchange rate constants for substitution of inner-sphere water ligands // Journal of the American Chemical Society, 1998, vol. 120, pp. 8287–8288.
- Kahveci M.U., Tasdelen M. A., W. D. Cook, Yagci Y. Photoinitiated cationic polymerization of mono and divinyl ethers in aqueous medium using ytterbium triflate as Lewis acid // Macromolecular Chemistry and Physics, 2008, vol. 209, pp. 1881–1886.
- Huang Q., Wu Y., Dan J. Cationic polymerization of isobutyl vinyl ether coinitiated with heteropolyacid or its salts in aqueous media // Journal of Polymer Science. Part A: Polymer Chemistry, 2013, vol. 51, pp. 546–556.
- Radchenko A. V., Kostjuk S. V., Ganachaud F. Cationic polymerization of isobutyl vinyl ether in aqueous media: physical chemistry tricks to fight against thermal runaway // Polymer Chemistry, 2013, vol. 4, pp. 1883–1892.
- Lewis S. P., Chai J., Collins S., Sciarone T. J. J., Henderson L. D., Fan C., Parvez M., Piers W. E. Isobutene polymerization using chelating diboranes: Polymerization in aqueous suspension and hydrocarbon solution // Organometallics, 2009, vol. 28, pp. 249–263.
- 41. Lewis S. P., Henderson L. D., Chandler B. D., Parvez M., Piers W. E., Collins S. Aqueous suspension polymerization of isobutylene initiated by 1,2-C₆F₄[B(C₆F₅)₂]₂ // Journal of the American Chemical Society, 2005, vol. 127, pp. 46–47.
- Mathers R. T., Lewis S. P. Aqueous cationic olefin polymerization using tris(pentafluorophenyl)gallium and aluminum // Journal of Polymer Science. Part A: Polymer Chemistry, 2012, vol. 50, pp. 1325–1332.
- Kostjuk S. V., Ganachaud F., Radchenko A. V., Vasilenko I. V. Cationic polymerization of styrene derivatives and cyclopentadi-

ene catalyzed by $B(C_6F_5)_3$ in aqueous media: comparison of suspension, emulsion and dispersion processes // Macromolecular Symposia, 2011, vol. 308, pp. 1–7.

- 44. Kostjuk S. V., Ouardad S., Peruch F., Deffieux A., Absalon C., Ganachaud F., Puskas J. E. Carbocationic polymerization of isoprene co-initiated by B(C₆F₅)₃: an alternative route towards natural rubber polymer analogues? // Macromolecules, 2011, vol. 44, pp. 1372–1384.
- 45. Kobayashi S., Manabe K. Development of novel Lewis acid catalysts for selective organic reactions in aqueous media // Accounts of Chemical Research, 2002, vol. 35, pp. 209–217.
- Li C.-J., Chen L. Organic chemistry in water C // Chemical Society Reviews, 2006, vol. 35, pp. 68–82.
- Ogawa C., Kobayashi S. Chiral Lewis acid catalysis in water // Current Organic Synthesis, 2011, vol. 8, pp. 345–355.
- Wang S., William R., Seah K. K. E. G., Liu X.-W. Lewis acid– surfactant-combined catalyzed synthesis of 4-aminocyclopentenones from glycals in water // Green Chemistry, 2013, vol. 15, pp. 3180–3183.
- 49. Touchard V., Graillat C., Boisson C., D'Agosto F., Spitz R. Use of Lewis acid surfactant combined catalysts in cationic polymerization in miniemulsion: apparent and hidden initiators // Macromolecules, 2004, vol. 37, pp. 3136–3142.
- Cauvin S., Ganachaud F., Moreau M., Hémery P. High molar mass polymers by cationic polymerisation in emulsion and miniemulsion // Chemical Communications, 2005, vol. 21, pp. 2713–2715.
- Vasilenko I. V., Yeong H. Y., Delgado M., Ouardad S., Peruch F., Voit B., Ganachaud F., Kostjuk S. V. A catalyst platform for unique cationic (co)polymerization in aqueous emulsion // Angewandte Chemie International Edition, 2015, vol. 54, pp. 12728–12732.
- 52. Vasilenko I. V., Ganachaud F., Kostjuk S. V. New insights into the cationic polymerization in emulsion catalyzed by water-dispersible Lewis acid surfactant complexes: a case study with p-methoxystyrene // Macromolecules, 2016, vol. 49, pp. 3264–3273.
- Hulnik M. I., Vasilenko I. V., Radchenko A. V., Peruch F., Ganachaud F., Kostjuk S. V. Aqueous cationic homo- and copolymerizations of β-myrcene and styrene: a green route toward terpene-based rubbery polymers // Polymer Chemistry, 2018, vol. 9, pp. 5690–5700.

References

- Kennedi Dzh. Kationnaya polimerizatsiya olefinov [Cationic polymerization of olefins]. Moscow: Mir Publ., 1978. 430 p.
- Kennedy J. P., Iván B. I. Designed polymers by carbocationic macromolecular engineering: theory and practice. Munich; New York: Hanser, 1992. 240 p.
- Rozentsvet V. A., Kozlov V. G., Monakov Yu. B. Kationnaya polimerizatsiya sopryazhennykh dienov [Cationic polymerization of conjugated diens]. Moscow: Nauka Publ., 2011. 238 p.
- Puskas J. E., Kaszas. G. Carbocationic polymerization // Encyclopedia of polymer science and technology. Ed.: H. F. Mark, J. I. Kroschwitz. New York: Wiley-InterScience, 2003, vol. 5, pp. 382–418.
- Aoshima S., Kanaoka S. A renaissance in living cationic polymerization. Chemical Reviews, 2009, vol. 109, pp. 5245–5287.
- Kostjuk S. V. Recent progress in the Lewis acid co-initiated cationic polymerization of isobutylene and 1,3-dienes. *RSC Advanc*es, 2015, vol. 5, pp. 13125–13144.
- Kostjuk S. V., Ganachauad F. Cationic polymerization of vinyl monomers in aqueous media: from monofunctional oligomers to long-lived polymer chains. *Accounts of Chemical Research*, 2010, vol. 43, pp. 357–367.
- Satoh K., Kamigaito M., Sawamoto M. Direct living cationic polymerization of p-hydroxystyrene with boron trifluoride etherate in the presence of water. *Macromolecules*, 2000, vol. 33, pp. 5405–5410.
- Satoh K., Kamigaito M., Sawamoto M. Direct synthesis of amphiphilic random and block copolymers of phydroxystyrene and p-methoxystyrene via living cationic polymerization with BF₃OEt₂/ROH system. *Macromolecules*, 2000, vol. 33, pp. 5830–5835.
- Satoh K., Nakashima J., Kamigaito M., Sawamoto M. Novel BF₃OEt₂/R-OH initiating system for controlled cationic polymer-

ization of styrene in the presence of water. *Macromolecules*, 2001, vol. 34, pp. 396–401.

- Kamigaito M., Nakashima J., Satoh K., Sawamoto M. Controlled cationic polymerization of p-(chloromethyl)styrene: BF₃catalyzed selective activation of a C-O terminal alcohol. *Macromolecules*, 2003, vol. 36, pp. 3540–3544.
- 12. Satoh K., Saitoh S., Kamigaito M. A linear lignin analogue: phenolic alternating copolymers from naturally occurring β methylstyrene via aqueous-controlled cationic copolymerization. *Journal of the American Chemical Society*, 2007, vol. 129, pp. 9586–9587.
- Radchenko A. V., Kostjuk S. V., Vasilenko I. V., Ganachaud F., Kaputsky F. N. Controlled/living cationic polymerization of styrene with BF₃OEt₂ as coinitiator in the presence of water: improvements and limitations *European Polymer Journal*, 2007, vol. 43, pp. 2576–2583.
- Kanazawa A., Kanaoka S., Aoshima S. Major progress in catalysts for living cationic polymerization of isobutyl vinyl ether: effectiveness of a variety of conventional halides. *Macromolecules*, 2009, vol. 42, pp. 3965–3972.
- Radchenko A. V., Kostjuk S. V., Gaponik L. V. BF₃OEt₂coinitiated cationic polymerization of cyclopentadiene in the presence of water at room temperature. *Polymer Bulletin*, 2011, vol. 67, pp. 1413–1424.
- 16. Beringhelli T., Maggioni D., D'Alfonso G. ¹H and ¹⁹F NMR investigation of the reaction of $B(C_6F_5)_3$ with water in toluene solution. *Organometallics*, 2001, vol. 20, pp. 4927–4938.
- Piers W. E., Chivers T. Pentafluorophenylboranes: from obscurity to applications. *Chemical Society Reviews*, 1997, vol. 26, pp. 345–354.
- Erker G. Tris(pentafluorophenyl)borane: a special boron Lewis acid for special reactions. *Dalton Transactions*, 2005, is. 11, pp. 1883–1890.
- Danopoulos A.A., Galsworthy J. R., Green M. L. H., Doerrer L. H., Cafferkey S. Hursthouse M. B. Equilibria in the B(C6F5)3–H2O system: synthesis and crystal structures of H2O-B(C6F5)3 and the anions [HOB(C6F5)3]– and [(F5C6)3B(μ-OH)B(C6F5)3]–. Chemical Communications, 1998, pp. 2529–2560.
- Bergquist C., Bridgewater B. M., Harlan C. J., Norton J. R., Friesner R. A., Parkin G. Aqua, alcohol, and acetonitrile adducts of tris(perfluorophenyl)borane: evaluation of Brønsted acidity and ligand lability with experimental and computational methods. *Journal of the American Chemical Society*, 2000, vol. 122, pp. 10581–10590.
- Kostjuk S. V., Radchenko A. V., Ganachaud F. Controlled/living cationic polymerization of p-methoxystyrene in solution and aqueous dispersion using tris(pentafluorophenyl)borane as Lewis acid: acetonitrile does the job. *Macromolecules*, 2007, vol. 40, pp. 482–490.
- Radchenko A. V., Kostjuk S. V., Vasilenko I. V. Ganachaud F., Kaputsky F. N., Guillaneuf Y. Kinetic study on the living/controlled cationic polymerization of p-methoxystyrene coinitiated by tris(pentafluorophenyl)borane. *Journal of Polymer Science. Part A: Polymer Chemistry*, 2008, vol. 46, pp. 6928–6939.
- Kostjuk S. V., Ganachaud F. Cationic polymerization of styrene in solution and aqueous suspension using B(C⁶F⁵)³ as a water-tolerant Lewis acid. *Macromolecules*, 2006, vol. 39, pp. 3110–3113.
- 24. Kostjuk S. V., Radchenko A. V., Ganachaud F. Controlled cationic polymerization of cyclopentadiene with B(C₆F₅)₃ as a coinitiator in the presence of water. *Journal of Polymer Science. Part A: Polymer Chemistry*, 2008, vol. 46, pp. 4734–4747.
- Vergnaud J. Sarazin Y., Strub H., Carpentier J.-F. Water-tolerant catalyst system for the bulk cationic polymerization of paramethylstyrene and indene. *European Polymer Journal*, 2010, vol. 46, pp. 1093–1099.
- Bompart M., Vergnaud J., Strub H., Carpentier J.-F. Indium (III) halides as exceptionally active, water-tolerant catalysts for cationic polymerization of styrenics. *Polymer Chemistry*, 2011, vol. 2, pp. 1638–1640.
- Cauvin S., Sadoun A., Dos Santos R., Belleney J., Ganachaud F., Hemery P. Cationic polymerization of p-methoxystyrene in miniemulsion. *Macromolecules*, 2002, vol. 35, pp. 7919–7927.
- Cauvin S., Dos Santos R., Ganachaud F. On the key role of the interface in the cationic polymerization of p-methoxystyrene in miniemulsion. *e-Polymers*, 2003, vol. 3, art. 050.
- 29. Satoh K., Kamigaito M., Sawamoto M. Controlled cationic polymerization of p-methoxystyrene in aqueous media with

Yb(OTf)₃. *Macromolecules*, 1999, vol. 32, pp. 3827–3832.

- Satoh K., Kamigaito M., Sawamoto M. Sulfonic acids as watersoluble initiators for cationic polymerization in aqueous media with Yb(OTf)₃. *Journal of Polymer Science Part A: Polymer Chemistry*, 2000, vol. 38, pp. 2728–2733.
- Satoh K., Kamigaito M., Sawamoto M. Lanthanide triflatesmediated emulsion cationic polymerization of palkoxystyrenes in aqueous media. *Macromolecules*, 2000, vol. 33, pp. 4660–4666.
- 32. Storey R. F., Scheuer A. D. Aqueous cationic polymerization of p-methoxystyrene using hydrophilic phenylphosphonic acids. *Journal of Macromolecular Science. Part A: Pure and Applied Chemistry*, 2004, vol. 41, pp. 257–266.
- Satoh K., Kamigaito M., Sawamoto M. Metal triflates and tetrafluoroborates as water-tolerant Lewis acids for cationic polymerization in aqueous media. *Macromolecules*, 2000, vol. 33, pp. 5836–5840.
- 34. Cauvin S., Ganachaud F., Touchard V., Hémery P., Leising F. Cationic polymerization of p-methoxystyrene in water with dodecylbenzenesulfonic acid and ytterbium triflate: evidence for an inverse emulsion process. *Macromolecules*, 2004, vol. 37, pp. 3214–3221.
- Cauvin S. Ganachaud F. On the preparation and polymerization of pmethoxystyrene miniemulsions in the presence of excess ytterbium triflate. *Macromolecular Symposia*, 2004, vol. 215, pp. 179–190.
- 36. Kobayashi S., Nagayama S., Busujima T. Lewis acid catalysts stable in water. Correlation between catalytic activity in water and hydrolysis constants and exchange rate constants for substitution of inner-sphere water ligands. *Journal of the American Chemical Society*, 1998, vol. 120, pp. 8287–8288.
- Kahveci M.U., Tasdelen M. A., W. D. Cook, Yagci Y. Photoinitiated cationic polymerization of mono and divinyl ethers in aqueous medium using ytterbium triflate as Lewis acid. *Macromolecular Chemistry and Physics*, 2008, vol. 209, pp. 1881–1886.
- Huang Q., Wu Y., Dan J. Cationic polymerization of isobutyl vinyl ether coinitiated with heteropolyacid or its salts in aqueous media. *Journal of Polymer Science Part A: Polymer Chemistry*, 2013, vol. 51, pp. 546–556.
- Radchenko A. V., Kostjuk S. V., Ganachaud F. Cationic polymerization of isobutyl vinyl ether in aqueous media: physical chemistry tricks to fight against thermal runaway. *Polymer Chemistry*, 2013, vol. 4, pp. 1883–1892.
- Lewis S. P., Chai J., Collins S., Sciarone T. J. J., Henderson L. D., Fan C., Parvez M., Piers W. E. Isobutene polymerization using chelating diboranes: Polymerization in aqueous suspension and hydrocarbon solution. *Organometallics*, 2009, vol. 28, pp. 249–263.
- Lewis S. P., Henderson L. D., Chandler B. D., Parvez M., Piers W. E., Collins S. Aqueous suspension polymerization of isobu-

tylene initiated by 1,2-C₆F₄[B(C₆F₅)₂]₂. *Journal of the American Chemical Society*, 2005, vol. 127, pp. 46–47.

- Mathers R. T., Lewis S. P. Aqueous cationic olefin polymerization using tris(pentafluorophenyl)gallium and aluminum. *Journal of Polymer Science. Part A: Polymer Chemistry*, 2012, vol. 50, pp. 1325–1332.
- 43. Kostjuk S. V., Ganachaud F., Radchenko A. V., Vasilenko I. V. Cationic polymerization of styrene derivatives and cyclopentadiene catalyzed by B(C₆F₅)₃ in aqueous media: comparison of suspension, emulsion and dispersion processes. *Macromolecular Symposia*, 2011, vol. 308, pp. 1–7.
- 44. Kostjuk S. V., Ouardad S., Peruch F., Deffieux A., Absalon C., Ganachaud F., Puskas J. E. Carbocationic polymerization of isoprene co-initiated by B(C₆F₅)₃: an alternative route towards natural rubber polymer analogues? *Macromolecules*, 2011, vol. 44, pp. 1372–1384.
- 45. Kobayashi S., Manabe K. Development of novel Lewis acid catalysts for selective organic reactions in aqueous media. Accounts of Chemical Research, 2002, vol. 35, pp. 209–217.
- Li C.-J., Chen L. Organic chemistry in water C. Chemical Society Reviews, 2006, vol. 35, pp. 68–82.
- Ogawa C., Kobayashi S. Chiral Lewis acid catalysis in water. Current Organic Synthesis, 2011, vol. 8, pp. 345–355.
- Wang S., William R., Seah K. K. E. G., Liu X.-W. Lewis acid– surfactant-combined catalyzed synthesis of 4aminocyclopentenones from glycals in water. *Green Chemistry*, 2013, vol. 15, pp. 3180–3183.
- Touchard V., Graillat C., Boisson C., D'Agosto F., Spitz R. Use of Lewis acid surfactant combined catalysts in cationic polymerization in miniemulsion: apparent and hidden initiators. *Macromolecules*, 2004, vol. 37, pp. 3136–3142.
- Cauvin S., Ganachaud F., Moreau M., Hémery P. High molar mass polymers by cationic polymerization in emulsion and miniemulsion. *Chemical Communications*, 2005, vol. 21, pp. 2713–2715.
- Vasilenko I. V., Yeong H. Y., Delgado M., Ouardad S., Peruch F., Voit B., Ganachaud F., Kostjuk S. V. A catalyst platform for unique cationic (co)polymerization in aqueous emulsion. *Angewandte Chemie International Edition*, 2015, vol. 54, pp. 12728–12732.
- Vasilenko I. V., Ganachaud F., Kostjuk S. V. New insights into the cationic polymerization in emulsion catalyzed by waterdispersible Lewis acid surfactant complexes: a case study with pmethoxystyrene. *Macromolecules*, 2016, vol. 49, pp. 3264–3273.
- Hulnik M. I., Vasilenko I. V., Radchenko A. V., Peruch F., Ganachaud F., Kostjuk S. V. Aqueous cationic homo- and copolymerizations of β-myrcene and styrene: a green route toward terpene-based rubbery polymers. *Polymer Chemistry*, 2018, vol. 9, pp. 5690–5700.

Поступила в редакцию 16.10.2019

© С. В. Костюк, 2019