УДК 678.675.027.38:678.046.2

ВЛИЯНИЕ ТЕМПЕРАТУРНОГО РЕЖИМА ЭКСТРУЗИОННОГО КОМПАУНДИРОВАНИЯ НА СТРУКТУРУ И МЕХАНИЧЕСКИЕ СВОЙСТВА КОМПОЗИТА ПОЛИАМИДА 6 И ТЕРМОРАСШИРЕННОГО ГРАФИТА

В. Н. АДЕРИХА¹⁺, А. П. КРАСНОВ², В. А. ШАПОВАЛОВ¹

¹ Отдел технологии полимерных композитов, ГНУ «Институт механики металлополимерных систем им. В. А. Белого НАН Беларуси», ул. Кирова, 32a, 246050 г. Гомель, Беларусь.

² «Институт элементоорганических соединений им. А. Н. Несмеянова РАН», ул. Вавилова 28, 117334 г. Москва, Россия.

Исследовано влияние температуры материального цилиндра экструдера на микроструктуру и механические свойства композита на основе полиамида ПА6, содержащего 0,5 мас.% терморасширенного графита (ТРГ). Установлено, что соэкструзия компонентов при температуре T в зонах смешения двухшнекового экструдера в интервале $T_{\rm kp} \leq T < T_{\rm пл}$ повышает активность ТРГ как нуклеатора кристаллизации, и, по данным рентгеноструктурного и термогравиметрического анализов, улучшает диспергирование слоистого наполнителя, что приводит к некоторому повышению прочностных характеристик композита по сравнению с материалом, полученным обычной соэкструзией компонентов в расплаве.

Ключевые слова: экструзия, полиамид, терморасширенный графит, диспергирование, нуклеационная активность, степень кристалличности.

Введение

Применение экструзионной технологии для получения термопластичных полимерных нанокомпозитов прямым смешением в расплаве с исходными немодифицированными нанонаполнителями, в ряде случаев неэффективно, ввиду относительно высокой сдвиговой прочности слоистых нанонаполнителей (слоистые силикаты, нанографиты) и выраженной склонности нановолокон и нанопорошков к формированию устойчивых агломератов. Последние сохраняются в структуре получаемого материала и играют роль дефектов структуры, инициирующих зарождение трещин под нагрузкой. В результате этого показатели прочности таких композитов нередко оказываются ниже прочности матричного полимера при сравнительно невысоких степенях наполнения (3-5 мас.%), как это наблюдали при наполнении нанотрубками [1] и нанопластинками графита [2]. у которых склонность к образованию прочных агломератов и реагломерированию выражена особенно сильно. Это обусловливает необходимость применения специальных методов обработки нанонаполнителей, ослабляющих склонность к агломерации и улучшающих совместимость с полимером за счет органофилизации: химической (например, обработка силановыми аппретами в сочетании с предварительным окислением поверхности в случае ее инертности) и нековалентной, за счет обработки мономерными и олигомерными ПАВ [3]. В связи с этим, привлекательны методы предварительной механической активации как собственно немодифицированного нанонаполнителя, так и его смеси с порошковым связующим. позволяющие получать нанокомпозиты с высокими показателями свойств и исключить затратный этап модифицирования наполнителя. Ее осуществляют в мельницах различной конструкции – шаровых [4], планетарных [5], струйных [6], или УЗобработкой компонентов в суспензии [7] и, реже, в расплаве [8, 9]. Отдельный интерес вызывает применение так называемой твердофазной экструзии (ТФЭ), в которой механическая смесь порошков нанонаполнителя и термопластичного связующего активируется/диспергируется под воздействием сдвиговых напряжений в двухшнековом экструдере при охлаждении материального цилиндра водой или другим хладагентом [10, 11]. Применение этого метода позволило при перера-

⁺ Автор, с которым следует вести переписку.

ботке смеси ПП с 2,5 мас.% природного графита добиться значительного повышения модуля упругости (на ≈43%), предела текучести (на ≈57%) при растяжении и T_{кр} (на 9 °C) по сравнению с композитом, полученным смешением в расплаве на одношнековом экструдере [10]. Отметим, что используемые компоненты не подвергались какойлибо предварительной обработке; при этом полученный композит сохранил, в отличие от образца сравнения, высокую пластичность при разрушении (є_р = 560%). Приведенная в указанных работах технология ТФЭ является двухстадийной. При ее реализации требуется последующее плавление и гранулирование получаемой активированной смеси порошков. Тем не менее, полученные данные свидетельствуют о возможности повышения комплекса показателей свойств наполненных полимеров за счет эффективного диспергирования немодифицированного наполнителя при воздействии высоких сдвиговых напряжений в процессе экструзионной переработки.

В рамках данного подхода, представляет интерес оценка возможности технологического упрощения метода получения наполненных термопластов традиционной расплавной экструзией за счет создания в материальном цилиндре экструдера низкотемпературных зон ($T_{\rm кp} \leq T < T_{\rm пл}$) с повышенными сдвиговыми напряжениями и осуществления расплавного смешения и активации/ диспергирования агломератов наполнителя в рамках одной операции. Проведенные недавно исследования по влиянию режима низкотемпературной экструзии (НЭ) на структуру и свойства композитов полиэтилентерефталата (ПЭТ) с наноглинами показали повышение степени их интеркалирования и усиление нуклеирующего влияния наноглин на кристаллизацию ПЭТ при переохлаждении расплава в зонах смешения [12]. В связи с этим представляло интерес рассмотреть возможности НЭ на других связующих и наполнителях.

Цель работы – оценка влияния низкотемпературных зон при расплавном экструзионном смешении полиамида ПА6 и терморасширенного графита (ТРГ) на структуру и свойства термопластичного полимерного композита.

Материалы и методы проведения исследования

В работе использовали полиамид ПА6 марки 210/310 (ПТР = 19 г/10 мин при 250 °C, 2,16 кг) и ТРГ, полученный термической обработкой расширяемого графита марки GRAFT EG-350 производства КНР. Последний подвергали термообработке в муфельной печи при 550 °C в течение 10 мин. Полученный ТРГ измельчали на скоростном лабораторном блендере, отмывали от остатков кислоты и сушили при 180 °C. Механическую смесь предварительно высушенных гранул ПА6, обработанных жидкофазным агентом удлинения цепи МГТ-Ж (ТУ ВҮ 400084698.265–2014) (0,1 мас.%) и опудренных ТРГ (0,5 мас.%), перемешивали механически, затем экструдировали на двухшнековом экструдере TSSK 35/40 (диаметр шнеков 35 мм, L/D 40), имеющем 10 секций с независимым нагревом/охлаждением по длине материального цилиндра. Температуру отдельных секций задавали таким образом, чтобы после плавления полимера температура в зонах смешения с 4-ой по 8-ую находилась в пределах $T_{\rm кp} \leq T \leq T_{\rm пл}$. Скорость вращения шнеков задавали 60 об/мин, величину подачи ограничивали 80-100 г/мин с учетом сведений об улучшении эксфолиации слоистых силикатов при пониженной подаче [13, 14]. Композит, полученный по такому режиму экструзии далее обозначается как композит ПА6/ТРГ (НЭ). В качестве контрольных образцов использовали ПА6, обработанный 0,1% МГТ-Ж, обозначаемый далее ПА6* и композит ПА6-0,5% ТРГ, полученные по обычному режиму расплавной экструзии ПА6/ТРГ (ЭР).

Образцы для механических испытаний изготавливали методом литья под давлением на термопластавтомате EN-30 с объемом впрыска 30 см³ (Тайвань). Показатели прочности при растяжении определяли на машине Instron 5567 на лопатках тип 5 (размер рабочей части 45×5×3 мм, ГОСТ 11262) при скорости движения подвижного зажима 50 мм/мин.

Динамический механический анализ (ДМА) проводили на приборе DMA8000 (Perkin Elmer), в режиме консольного изгиба с частотой 1 Гц, при скорости нагревания 2 °С/мин. В качестве образцов использовали бруски с размерами рабочей части 2,1×10×15 мм, которые вырезали из дисков Ø50 мм толщиной 2,1 мм, полученных литьем под давлением. Образцы перед проведением испытаний сушили в вакуумной печи в течение 2 ч при 100 °С. Структуру образцов изучали методом динамической сканирующей калориметрии (ДСК) на приборе Diamond DSC (Perkin Elmer, CША) в токе азота при скорости нагрева/охлаждения 15 °С/мин в интервале температур 50-250 °C; выдержка при 250 °С после 1-ого цикла нагрева 1 мин, навеска ~8 мг. При расчете степени кристалличности х величину энтальпии по 2-ому циклу плавления $\Delta H_{\text{пл2}}$ относили к содержанию полимера в навеске, принимая величину энтальпии плавления полностью кристаллического ПА6 равной 240 Дж/г, являющейся средним между энтальпией плавления α- и γ- кристаллических модификаций ПА6 со значениями 241 и 239 Дж/г соответственно [15]. Приводимые результаты ДСК являются средними двух параллельных измерений. Для структурных исследований использовали также метод рентгеноструктурного анализа. Дифрактограммы снимали на приборе APD-2000 PRO (GNR Analytic Instruments, Италия) в интервале углов 20 10-30 град с шагом 0,002 град и временем на точку 0,5 с, напряжении на трубке 40 кВ, токе 30 мА. Термо-

Рисунок 1 – Предел текучести при растяжении ($\sigma_{\rm T}$), относительное удлинение при разрыве ($\varepsilon_{\rm p}$) и модуль упругости Юнга ($E_{\rm IO}$) ПА6* (1) и композитов, изготовленных по режимам ЭР (2) и НЭ (3)

гравиметрический анализ проводили на дериватографе Netzsch STA 449 F3 Jupiter в токе азота в интервале температур 25–800 °С при скорости нагрева 2,5 °С/мин и навеске \approx 250 мг.

Результаты исследования и их обсуждение

Механические свойства при растяжении

На диаграмме рис. 1 приведены результаты механических испытаний при растяжении композитов, изготовленных по режимам ЭР и НЭ. Как видно, различия в величине предела текучести и модуля упругости между ПА6* и композитом ПА6/ТРГ (ЭР) незначительны, а композит, изготовленный по режиму НЭ имеет некоторое (~105– 108%) превосходство по пределу текучести и модулю упругости. Относительное удлинение обоих композитов резко падает по сравнению с ненаполненным ПА6*, однако пластичный характер разрушения сохраняется.

Отличия в показателях прочности композитов могут быть обусловлены различиями в микроструктуре композита, вызванными влиянием условий компаундирования и литья под давлением на процессы ориентации и кристаллизации полимерной матрицы, а также различиями в степени армирования композита (если степень диспергирования наполнителя зависит от режима компаундирования).

Анализ материалов методом ДМА

Результаты определения динамического механического модуля упругости материалов при изгибе E' приведены на рис. 2. Следует, что при $T \le T_g$ динамический модуль упругости композита ПА6/ТРГ (ЭР) незначительно отличается от модуля упругости ненаполненного ПА6*, а у ПА6/ТРГ (НЭ) он заметно выше, чем у исходного полимера и ПА6/ТРГ (ЭР). Заметим, что превосходство композита по динамическому модулю упругости при изгибе качественно согласуется с результатами оценки модуля упругости при растяжении (рис. 1).

При *T* > *T*_g различие между композитом ПА6/ТРГ (ЭР) и ненаполненным ПА6* становится более явным за счет эффекта армирования композита пластинками ТРГ. Преимущество в величине E' у композита ПА6/ТРГ (НЭ) в сравнении с композитом ПА6/ТРГ (ЭР) сохраняется, однако, с учетом логарифмической шкалы Е', по абсолютной величине различия в высокоэластическом состоянии снижаются почти на порядок по сравнению с наблюдаемыми в стеклообразном состоянии. Данный факт позволяет говорить о том, что наблюдаемый прирост E' при T < T_g в случае композита ПА6/ТРГ (НЭ) обусловлен преимущественно изменениями структуры аморфной фазы, наиболее вероятно, за счет образования на поверхности частиц наполнителя межфазных слоев с ограниченной молекулярной подвижностью, образующих вместе с кристаллитами и частью

Рисунок 2 – Температурные зависимости динамического модуля упругости (E) ПА6* (I) и его композитов с 0,5% ТРГ (2, 3), переработанных по режиму ЭР (I, 2) и НЭ (3)

аморфной фазы на их поверхности так называемую связанную фазу [16]. Рост ее содержания при условии одинаковой массовой степени наполнения можно допустить, если применение НЭ режима компаундирования позволило улучшить диспергирование наполнителя, соответственно площадь межфазного взаимодействия, долю межфазных слоев с ограниченной подвижностью и, в меньшей мере, степень армирования.

Результаты динамической сканирующей микрокалориметрии

Результаты анализа влияния условий экструзии на структуру образцов исходного полимера и его композитов методом ДСК приведены в таблице и на рис. 3. Из сопоставления полученных данных видно, что наполнитель инициирует кристаллизацию ПА6, о чем свидетельствует повышение температуры кристаллизации $T_{\rm кp}$ композитов по сравнению с исходным ПА6*, причем для композитов ПА6/ТРГ (РЭ) $T_{\rm кр}$ повышается на $\approx 1,0$ °С по сравнению с исходным (прошедшим экструзию) ПА6*, а переход к режиму НЭ повышает $T_{\rm кр}$ композита дополнительно на ≈1,6 °С до ≈189 °С. Последнее, видимо, является результатом более активного разрушения агломератов ТРГ при НЭ и появления свежеобразованных поверхностей с повышенной активностью в гетерофазной нуклеашии

Обращает на себя внимание тот факт, что $T_{\rm kp}$ в поверхностных слоях (облое на блочных образ-

цах) обоих композитов на 0,3-0,4 °С выше, чем у взятых в центральных слоях объема блочных образцов. Это может быть следствием более активного разрушения агломератов и агрегатов ТРГ под действием повышенных сдвиговых напряжений, возникающих в поверхностном слое при быстром охлаждении потока расплавленного материала в контакте с холодной (~50 °C) формующей поверхностью. Вероятное диспергирование наполнителя в поверхностном слое образцов при их изготовлении методом литья под давлением не перечеркивает эффекты предшествующей экструзионной переработки, поскольку Ткр поверхностного слоя и объема композита НЭ на ≈1,6 °С выше, чем у композита ЭР, что позволяет предположить более эффективную активацию ТРГ на этапе НЭ.

Повышение $T_{\kappa p}$ в композитах ПА6/ТРГ (НЭ) сопровождается снижением степени кристалличности: в поверхностном слое χ снижается по сравнению с аналогичным показателем ПА6/ТРГ (РЭ) несущественно (на $\approx 1,2\%$), но в объемных слоях степень кристалличности объема композита ПА6/ТРГ (НЭ) снижается на $\approx 2,5\%$ в сравнении с поверхностью композита НЭ и на $\approx 4,1\%$ в сравнении с объемом композита РЭ. Поведение композита НЭ в данном случае повторяет особенности кристаллизации нанокомпозитов ПА6 на основе слоистых силикатов, у которых степень кристалличности в поверхностном слое также выше, чем в объеме [14], что объясняют появлением стерических препятствий укладке макроцепей в нано-

Степень кристалличности и температура максимальной скорости кристаллизации ПА6* и его композитов по данным ДСК

Материал	ЭР		НЭ	
	χ ₂ , %	$T_{\kappa p1}$	χ ₂ , %	$T_{\kappa pl}$
ПА6*	$\frac{29.6^{**}}{30.7}$	<u>186,69</u> 186,16	$\frac{29,5}{30,8}$	$\frac{186,17}{186,16}$
ПА6/ТРГ*	$\frac{29,9}{30,3}$	<u>187,46</u> 187,14	<u>28,7</u> 26,2	<u>189,07</u> 188,77

Примечание. ** – В числителе – для поверхностного слоя (облоя), в знаменателе – для объема образца.

Рисунок 3 – Температурные зависимости энтальпии образцов поверхностного слоя (*a*) и объема (δ) композитов, полученных по режимам НЭ (1, 2) и ЭР (1', 2') от температуры при повторном нагреве (1, 1') и охлаждении после его однократного нагрева (2, 2')

Рисунок 4 – Дифрактограммы поверхностного слоя образцов ПА6* (1, 2) и композитов ПА6/ТРГ (3, 4), полученных по режиму ЭР (2, 3) и НЭ (1, 4)

композите с интеркалированным/эксфолиированным слоистым наполнителем. При этом у нанокомпозитов с наибольшей степенью эксфолиации органоглины обнаруживается наименьшая степень кристалличности [17].

На температурных зависимостях теплового потока при нагревании образцов поверхностного слоя композита ПА6/ТРГ (НЭ) (рис. 3, а) признаки полиморфизма ПА6 не проявляются, а для композитов ПА6/ТРГ (ЭР) на термограмме плавления четко регистрируются перегибы при ~214 и ~217 °C, относящиеся к плавлению у- и а-кристаллических модификаций ПА6 соответственно [15]. Термограмма ПА6 центральной части (объема) литьевых образцов композита ПА6/ТРГ (ЭР) отличается заметным уширением и появлением дополнительных пиков рекристаллизации при 186-190 °С у и а форм соответственно, и слабо выраженных пиков плавления при ≈208 и ≈225 °C (рис. 2, б). Пик плавления при 208 °C связывают с плавлением кристаллитов у-модификации с уменьшенными размерами и повышенной дефектностью [18], образующихся в условиях пространственных ограничений, налагаемых присутствием большого количества пластинок наполнителя, а пик плавления при ≈225 °C, вероятно, относится к плавлению ламелей α-кристаллической модификации ПА6.

Данные рентгеноструктурного анализа

Согласно литературным данным, полиморфизм ПА6 проявляется на дифрактограммах рефлексами при $2\theta = 20,3$ и 23,7 град для α -формы и рефлекса при 10,7 и 21,4 град для γ -формы [18].

Анализ дифрактограмм показывает (рис. 4), что у ненаполненного полимера на них присутствует интенсивный рефлекс при $2\theta \approx 21,2$ град, который относится к γ -кристаллической модификации ПА6 и слабое плечо α -модификации при 20,3 град. Интенсивность рефлекса при $2\theta \approx 21,2$ град несколько выше в случае НЭ, что объясняется преимущественным образованием у-модификации при воздействии на расплав сдвиговых напряжений и пониженных температурах кристаллизации ПА6. На дифрактограммах обоих композитов наблюдается появление плеча при 22,8 град, указывающее на предпочтительный рост α-модификации при охлаждении расплава ПА6 в присутствии ТРГ, что согласуется с данными Uhl и соавт. [19]. Этот факт можно интерпретировать как свидетельство отсутствия сильного межфазного взаимодействия между полимером и наполнителем, вследствие чего ПА6 кристаллизуется в αформе, присущей исходному ненаполненному полимеру, в то время как сильное межфазное взаимодействие, например, в полиамид-силикатных нанокомпозитах индуцирует образование у-формы в полиамиде 6, что, по мнению ряда авторов, является причиной сильного упрочнения этого класса полимерных нанокомпозитов [20-22]. Отметим, что у полученного по режиму НЭ композита интенсивность рефлекса при 22,8 град выше, а интенсивность рефлекса графита при $2\theta = 26.4$ град. напротив, ниже (рис. 4 и вставка, кривые 3, 4), чем у композита ПА6/ТРГ (ЭР), что не согласуется с преимущественным образованием α-формы под влиянием графита. Для объяснения данного несоответствия содержание графита в композитах было уточнено с помощью ТГА.

Результаты ТГА показали, что композит НЭ характеризуется большей величиной коксового остатка при 800 °C (1,67%) по сравнению с композитом РЭ (1,59%), что свидетельствует о слегка повышенном содержании графита (на ~0,08% или в 1,16 раза) вероятно, обусловленном накоплением ТРГ на рабочих элементах материального цилиндра экструдера (композит НЭ экструдировался после композита РЭ). Это объясняет повышенную интенсивность плеча α -формы при 2 θ = 22,8 град, индуцируемой в присутствии графита, но не со-

гласуется с пониженной интенсивностью рефлекса графита при $2\theta = 26,4$ град. Вероятная причина расхождения – более эффективное диспергирование ТРГ при НЭ. Данный факт подтверждают и ранее приведенные данные ДСК. Диспергирование приводит к дезориентации пластинок нанографита и снижению интенсивности рефлекса в результате повышенного рассеяния рентгеновского излучения.

Заключение

Полученные результаты показывают, что применение НЭ при компаундировании композита на основе ПА6 и терморасширенного графита повышает структурообразующую активность последнего и улучшает диспергирование слоистого наполнителя, что проявляется в дополнительном росте температуры кристаллизации ПА6 и снижении интенсивности рефлекса ТРГ в дифрактограмме композита НЭ по сравнению с композитом, полученным по традиционной технологии соэкструзии компонентов в расплаве. Это вызывает упрочнение аморфной фазы, что является причиной повышения динамического механического модуля упругости при изгибе и показателей прочности при испытаниях на растяжение при температуре ниже температуры стеклования.

Обнаруженное улучшение диспергирования высокомодульного наполнителя при НЭ не влияет на характер межфазного взаимодействия полиамида и ТРГ, так как в этом случае, как и при переработке по режиму ЭР, ПА6 кристаллизуется с образованием более совершенной и термодинамически более устойчивой α-кристаллической модификации, характерной для исходного ненаполненного полимера.

Обозначения

 $T_{\rm kp}$ – температура максимальной скорости кристаллизации; $\sigma_{\rm r}$ – предел текучести при растяжении; $\varepsilon_{\rm p}$ – относительное удлинение при разрыве; $E_{\rm IO}$ – модуль Юнга при растяжении; T_g – температура стеклования; χ_2 – степень кристалличности по второму циклу плавления.

Литература

- Hassani, A.J. Preparation and characterization of polyamide 6 nanocomposites using MWCNTs based on bimetallic Co-Mo/MgO catalyst / A.J. Hassani, Z.A.M. Ishak, A.R. Mohamed // Express Polymer Letters. – 2014. – Vol. 8, No 3. – P. 177–186.
- Increasing the toughness of nylon 12 by the incorporation of functionalized graphene / R. Rafiq [et al.] // Carbon. - 2010.
 - Vol. 48. - P. 4309-4314.
- 3. Functionalization of graphene: covalent and non-covalent approaches / V. Georgakilas [et al.] // Derivatives and Applications dx.doi.org/10.1021/cr3000412.
- 4. Curing kinetics and mechanical behavior of natural rubber reinforced with pretreated carbon nanotubes / G. Sui [et al.]

// Materials Science and Engineering: A. – 2008. – Vol. 485, No 1–2. – P. 524–531.

- Охлопкова, А.А. Полимерные композиционные материалы триботехнического назначения на основе политетрафторэтилена и ультрадисперсных керамик / А.А. Охлопкова, А.В. Виноградов // Трение и износ. 2002. Т. 23, № 6. С. 653–660.
- A study on the friction and wear behavior of PTFE filled with alumina nanoparticles / W.G. Sawyer [et al.] // Wear. – 2003. – Vol. 254. – P. 573–580.
- PTFE Tribology and the Role of Mechanochemistry in the development of protective surface films / K.L. Harris [et al.] // DOI: 10.1021/acs.macromol.5b00452.
- Swain, S.K. Effect of ultrasound on HDPE/clay nanocomposites: Rheology, structure and properties / S.K. Swain, A.I. Isayev // Polymer. – 2007. – Vol. 48. – P. 281–289.
- Choi, J. Natural Rubber/Carbon nanotube nanocomposites prepared by ultrasonically aided extrusion / J. Choi, A.I. Isayev // Rubber Chem. Techn. – 2013. – Vol. 86, No 1. – P. 109–131.
- Polymer-graphite nanocomposites: effective dispersion and major property enhancement via solid-state shear pulverization / K. Wakabayashi [et al.] // Macromolecules. - 2008. -Vol. 41. - P. 1905-1908.
- Iyer, K.A. Importance of superior dispersion versus filler surface modification in producing robust polymer nanocomposites: The example of polypropylene/nanosilica hybrids / K.A. Iyer, J.M. Torkelson // Polymer. 2015. Vol. 68. P. 147–157.
- Песецкий, С.С. Низкотемпературная экструзия в технологии нанокомпозитов ПЭТ/глина / Песецкий С.С., Богданович С.П., Адериха В.Н., Коваль В.Н. // ДАН Беларуси. – 2016. – Т. 60, № 1. – С. 107–113.
- An investigation of mechanical and thermal properties of polypropylene clay nanocomposites containing different nanoclays / S. Arunachalam [et al.] // Macromol. Mater. Eng. - 2015. - Vol. 300. - P. 966-976.
- Sanguansat, P. Effect of matrix morphology on mechanical and barrier properties of polypropylene nanocomposite films containing preferentially aligned organoclay platelets / P. Sanguansat, T. Amornsakchai // Journal of Polymer Research. – 2015. – Vol. 22. – P. 3–30.
- Fornes, T.D. Crystallization behavior of nylon 6 nanocomposites / T.D. Fornes, D.R. Paul // Polymer. – 2013. – Vol. 44. – P. 3945–3961.
- Karevan, M. Formation of a complex constrained region at the graphite nanoplatelets-polyamide 12 interface / M. Karevan, K. Kalaitzidou // Polymer. - 2013. - Vol. 54. - P. 3691-3698.
- An investigation on non-isothermal crystallization behavior and morphology of polyamide 6/ poly(ethyleneco-1-butene)graft-maleic anhydride/organoclay / S. Gomari [et al.]. // Nanocomposites, Polyolefins Journal. – 2015. – Vol. 2, No 2. – P. 99–108.
- Liu, T.X. Morphology, thermal and mechanical behavior of polyamide 6/layered-silicate nanocomposites / T.X. Liu, Z.H. Liu, K.X. Ma, L. Shen, K.Y. Zeng, C.B. He // Comp. Sci. Techn. - 2013. - Vol. 63. - P. 331-337.
- Expandable graphite/polyamide-6 nanocomposites / F.M. Uhl [et al.] // Polym. Degrad. Stab. – 2–15. – Vol. 89. – P. 70–84.
- Lincoln, D.M. Isothermal crystallization of nylon-6/montmorillonite nanocomposites / D.M. Lincoln, R.A. Vaia, R. Krishnamoorti // Macromolecules. - 2004. - Vol. 37. - P. 4554-4561.
- Tabuani, D. Nylon-6 nanocomposites, study of the influence of the nanofiller nature on morphology and material properties / Tabuani D., Ceccia S., Camino G. // J. Polym. Sci. Part B: Polym. Phys. - 2009. - Vol. 47. - P. 1935-1948.
- Ray, S.S. Polymer-layered silicate nanocomposite: a review from preparation to processing / S.S. Ray, M. Okamoto // Prog. Polym. Sci. - 2003. - Vol. 28. - P. 1539-1641.

Aderikha V. N., Krasnov A. P., and Shapovalov V. A. Effect of the temperature regime of extrusion compounding on structure and mechanical properties of polyamide 6-expanded graphite composite.

Effect of the temperature of extruder's cylinder on microstructure and mechanical properties of polyamide PA6 filled with 0.5 wt.% of thermally expanded graphite (TEG). It is found that extrusion blending of the components at the temperature T in the mixing zones of the double screw extruder in the range $T_{cr} \le T \le T_m$ increases nucleating activity of TEG and according to results of XRD and TG analysis, improves dispersion of the layered filler, which leads to a definite increase of the composite strength characteristics compared to those of the material prepared by conventional extrusion blending in the melt.

Keywords: extrusion, polyamide, thermally expanded graphite, dispersion, nucleating activity.

Поступила в редакцию 09.03.2016.

© В. Н. Адериха, А. П. Краснов, В. А. Шаповалов, 2016.